Abstractified Multi-instance Learning (AMIL) for Biomedical Relation
Extraction
- URL: http://arxiv.org/abs/2110.12501v1
- Date: Sun, 24 Oct 2021 17:49:20 GMT
- Title: Abstractified Multi-instance Learning (AMIL) for Biomedical Relation
Extraction
- Authors: William Hogan, Molly Huang, Yannis Katsis, Tyler Baldwin, Ho-Cheol
Kim, Yoshiki Vazquez Baeza, Andrew Bartko, Chun-Nan Hsu
- Abstract summary: We propose a novel reformulation of multi-instance learning (MIL) for relation extraction in the biomedical domain.
By grouping entities by types, we are better able to take advantage of the benefits of MIL and further denoise the training signal.
We show this reformulation, which we refer to as abstractified multi-instance learning (AMIL), improves performance in biomedical relationship extraction.
- Score: 0.7695660509846215
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Relation extraction in the biomedical domain is a challenging task due to a
lack of labeled data and a long-tail distribution of fact triples. Many works
leverage distant supervision which automatically generates labeled data by
pairing a knowledge graph with raw textual data. Distant supervision produces
noisy labels and requires additional techniques, such as multi-instance
learning (MIL), to denoise the training signal. However, MIL requires multiple
instances of data and struggles with very long-tail datasets such as those
found in the biomedical domain. In this work, we propose a novel reformulation
of MIL for biomedical relation extraction that abstractifies biomedical
entities into their corresponding semantic types. By grouping entities by
types, we are better able to take advantage of the benefits of MIL and further
denoise the training signal. We show this reformulation, which we refer to as
abstractified multi-instance learning (AMIL), improves performance in
biomedical relationship extraction. We also propose a novel relationship
embedding architecture that further improves model performance.
Related papers
- Graph-Based Retriever Captures the Long Tail of Biomedical Knowledge [2.2814097119704058]
Large language models (LLMs) are transforming the way information is retrieved with vast amounts of knowledge being summarized and presented.
LLMs are prone to highlight the most frequently seen pieces of information from the training set and to neglect the rare ones.
We introduce a novel information-retrieval method that leverages a knowledge graph to downsample these clusters and mitigate the information overload problem.
arXiv Detail & Related papers (2024-02-19T18:31:11Z) - EMBRE: Entity-aware Masking for Biomedical Relation Extraction [12.821610050561256]
We introduce the Entity-aware Masking for Biomedical Relation Extraction (EMBRE) method for relation extraction.
Specifically, we integrate entity knowledge into a deep neural network by pretraining the backbone model with an entity masking objective.
arXiv Detail & Related papers (2024-01-15T18:12:01Z) - Diversifying Knowledge Enhancement of Biomedical Language Models using
Adapter Modules and Knowledge Graphs [54.223394825528665]
We develop an approach that uses lightweight adapter modules to inject structured biomedical knowledge into pre-trained language models.
We use two large KGs, the biomedical knowledge system UMLS and the novel biochemical OntoChem, with two prominent biomedical PLMs, PubMedBERT and BioLinkBERT.
We show that our methodology leads to performance improvements in several instances while keeping requirements in computing power low.
arXiv Detail & Related papers (2023-12-21T14:26:57Z) - An Empirical Study on Relation Extraction in the Biomedical Domain [0.0]
We consider both sentence-level and document-level relation extraction, and run a few state-of-the-art methods on several benchmark datasets.
Our results show that (1) current document-level relation extraction methods have strong generalization ability; (2) existing methods require a large amount of labeled data for model fine-tuning in biomedicine.
arXiv Detail & Related papers (2021-12-11T03:36:38Z) - BioIE: Biomedical Information Extraction with Multi-head Attention
Enhanced Graph Convolutional Network [9.227487525657901]
We propose Biomedical Information Extraction, a hybrid neural network to extract relations from biomedical text and unstructured medical reports.
We evaluate our model on two major biomedical relationship extraction tasks, chemical-disease relation and chemical-protein interaction, and a cross-hospital pan-cancer pathology report corpus.
arXiv Detail & Related papers (2021-10-26T13:19:28Z) - Discovering Drug-Target Interaction Knowledge from Biomedical Literature [107.98712673387031]
The Interaction between Drugs and Targets (DTI) in human body plays a crucial role in biomedical science and applications.
As millions of papers come out every year in the biomedical domain, automatically discovering DTI knowledge from literature becomes an urgent demand in the industry.
We explore the first end-to-end solution for this task by using generative approaches.
We regard the DTI triplets as a sequence and use a Transformer-based model to directly generate them without using the detailed annotations of entities and relations.
arXiv Detail & Related papers (2021-09-27T17:00:14Z) - Slot Filling for Biomedical Information Extraction [0.5330240017302619]
We present a slot filling approach to the task of biomedical IE.
We follow the proposed paradigm of coupling a Tranformer-based bi-encoder, Dense Passage Retrieval, with a Transformer-based reader model.
arXiv Detail & Related papers (2021-09-17T14:16:00Z) - Scientific Language Models for Biomedical Knowledge Base Completion: An
Empirical Study [62.376800537374024]
We study scientific LMs for KG completion, exploring whether we can tap into their latent knowledge to enhance biomedical link prediction.
We integrate the LM-based models with KG embedding models, using a router method that learns to assign each input example to either type of model and provides a substantial boost in performance.
arXiv Detail & Related papers (2021-06-17T17:55:33Z) - Neural networks for Anatomical Therapeutic Chemical (ATC) [83.73971067918333]
We propose combining multiple multi-label classifiers trained on distinct sets of features, including sets extracted from a Bidirectional Long Short-Term Memory Network (BiLSTM)
Experiments demonstrate the power of this approach, which is shown to outperform the best methods reported in the literature.
arXiv Detail & Related papers (2021-01-22T19:49:47Z) - Towards Robust Partially Supervised Multi-Structure Medical Image
Segmentation on Small-Scale Data [123.03252888189546]
We propose Vicinal Labels Under Uncertainty (VLUU) to bridge the methodological gaps in partially supervised learning (PSL) under data scarcity.
Motivated by multi-task learning and vicinal risk minimization, VLUU transforms the partially supervised problem into a fully supervised problem by generating vicinal labels.
Our research suggests a new research direction in label-efficient deep learning with partial supervision.
arXiv Detail & Related papers (2020-11-28T16:31:00Z) - ATSO: Asynchronous Teacher-Student Optimization for Semi-Supervised
Medical Image Segmentation [99.90263375737362]
We propose ATSO, an asynchronous version of teacher-student optimization.
ATSO partitions the unlabeled data into two subsets and alternately uses one subset to fine-tune the model and updates the label on the other subset.
We evaluate ATSO on two popular medical image segmentation datasets and show its superior performance in various semi-supervised settings.
arXiv Detail & Related papers (2020-06-24T04:05:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.