Accelerate 3D Object Processing via Spectral Layout
- URL: http://arxiv.org/abs/2110.12621v2
- Date: Thu, 28 Oct 2021 00:10:09 GMT
- Title: Accelerate 3D Object Processing via Spectral Layout
- Authors: Yongyu Wang
- Abstract summary: We propose to embed the essential information in a 3D object into 2D space via spectral layout.
The proposed method can achieve high quality 2D representations for 3D objects, which enables to use 2D-based methods to process 3D objects.
- Score: 1.52292571922932
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 3D image processing is an important problem in computer vision and pattern
recognition fields. Compared with 2D image processing, its computation
difficulty and cost are much higher due to the extra dimension. To
fundamentally address this problem, we propose to embed the essential
information in a 3D object into 2D space via spectral layout. Specifically, we
construct a 3D adjacency graph to capture spatial structure of the 3D voxel
grid. Then we calculate the eigenvectors corresponding to the second and third
smallest eigenvalues of its graph Laplacian and perform spectral layout to map
each voxel into a pixel in 2D Cartesian coordinate plane. The proposed method
can achieve high quality 2D representations for 3D objects, which enables to
use 2D-based methods to process 3D objects. The experimental results
demonstrate the effectiveness and efficiency of our method.
Related papers
- SpatialTracker: Tracking Any 2D Pixels in 3D Space [71.58016288648447]
We propose to estimate point trajectories in 3D space to mitigate the issues caused by image projection.
Our method, named SpatialTracker, lifts 2D pixels to 3D using monocular depth estimators.
Tracking in 3D allows us to leverage as-rigid-as-possible (ARAP) constraints while simultaneously learning a rigidity embedding that clusters pixels into different rigid parts.
arXiv Detail & Related papers (2024-04-05T17:59:25Z) - What You See is What You GAN: Rendering Every Pixel for High-Fidelity
Geometry in 3D GANs [82.3936309001633]
3D-aware Generative Adversarial Networks (GANs) have shown remarkable progress in learning to generate multi-view-consistent images and 3D geometries.
Yet, the significant memory and computational costs of dense sampling in volume rendering have forced 3D GANs to adopt patch-based training or employ low-resolution rendering with post-processing 2D super resolution.
We propose techniques to scale neural volume rendering to the much higher resolution of native 2D images, thereby resolving fine-grained 3D geometry with unprecedented detail.
arXiv Detail & Related papers (2024-01-04T18:50:38Z) - XDGAN: Multi-Modal 3D Shape Generation in 2D Space [60.46777591995821]
We propose a novel method to convert 3D shapes into compact 1-channel geometry images and leverage StyleGAN3 and image-to-image translation networks to generate 3D objects in 2D space.
The generated geometry images are quick to convert to 3D meshes, enabling real-time 3D object synthesis, visualization and interactive editing.
We show both quantitatively and qualitatively that our method is highly effective at various tasks such as 3D shape generation, single view reconstruction and shape manipulation, while being significantly faster and more flexible compared to recent 3D generative models.
arXiv Detail & Related papers (2022-10-06T15:54:01Z) - DM-NeRF: 3D Scene Geometry Decomposition and Manipulation from 2D Images [15.712721653893636]
DM-NeRF is among the first to simultaneously reconstruct, decompose, manipulate and render complex 3D scenes in a single pipeline.
Our method can accurately decompose all 3D objects from 2D views, allowing any interested object to be freely manipulated in 3D space.
arXiv Detail & Related papers (2022-08-15T14:32:10Z) - 3D object reconstruction and 6D-pose estimation from 2D shape for
robotic grasping of objects [2.330913682033217]
We propose a method for 3D object reconstruction and 6D-pose estimation from 2D images.
By computing transformation parameters directly from the 2D images, the number of free parameters required during the registration process is reduced.
In robot experiments, successful grasping of objects demonstrates its usability in real-world environments.
arXiv Detail & Related papers (2022-03-02T11:58:35Z) - AutoShape: Real-Time Shape-Aware Monocular 3D Object Detection [15.244852122106634]
We propose an approach for incorporating the shape-aware 2D/3D constraints into the 3D detection framework.
Specifically, we employ the deep neural network to learn distinguished 2D keypoints in the 2D image domain.
For generating the ground truth of 2D/3D keypoints, an automatic model-fitting approach has been proposed.
arXiv Detail & Related papers (2021-08-25T08:50:06Z) - 3D-to-2D Distillation for Indoor Scene Parsing [78.36781565047656]
We present a new approach that enables us to leverage 3D features extracted from large-scale 3D data repository to enhance 2D features extracted from RGB images.
First, we distill 3D knowledge from a pretrained 3D network to supervise a 2D network to learn simulated 3D features from 2D features during the training.
Second, we design a two-stage dimension normalization scheme to calibrate the 2D and 3D features for better integration.
Third, we design a semantic-aware adversarial training model to extend our framework for training with unpaired 3D data.
arXiv Detail & Related papers (2021-04-06T02:22:24Z) - Improved Modeling of 3D Shapes with Multi-view Depth Maps [48.8309897766904]
We present a general-purpose framework for modeling 3D shapes using CNNs.
Using just a single depth image of the object, we can output a dense multi-view depth map representation of 3D objects.
arXiv Detail & Related papers (2020-09-07T17:58:27Z) - Cylinder3D: An Effective 3D Framework for Driving-scene LiDAR Semantic
Segmentation [87.54570024320354]
State-of-the-art methods for large-scale driving-scene LiDAR semantic segmentation often project and process the point clouds in the 2D space.
A straightforward solution to tackle the issue of 3D-to-2D projection is to keep the 3D representation and process the points in the 3D space.
We develop a 3D cylinder partition and a 3D cylinder convolution based framework, termed as Cylinder3D, which exploits the 3D topology relations and structures of driving-scene point clouds.
arXiv Detail & Related papers (2020-08-04T13:56:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.