Saliency-Guided Hidden Associative Replay for Continual Learning
- URL: http://arxiv.org/abs/2310.04334v1
- Date: Fri, 6 Oct 2023 15:54:12 GMT
- Title: Saliency-Guided Hidden Associative Replay for Continual Learning
- Authors: Guangji Bai, Qilong Zhao, Xiaoyang Jiang, Yifei Zhang, Liang Zhao
- Abstract summary: Continual Learning is a burgeoning domain in next-generation AI, focusing on training neural networks over a sequence of tasks akin to human learning.
This paper presents the Saliency Guided Hidden Associative Replay for Continual Learning.
This novel framework synergizes associative memory with replay-based strategies. SHARC primarily archives salient data segments via sparse memory encoding.
- Score: 13.551181595881326
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Continual Learning is a burgeoning domain in next-generation AI, focusing on
training neural networks over a sequence of tasks akin to human learning. While
CL provides an edge over traditional supervised learning, its central challenge
remains to counteract catastrophic forgetting and ensure the retention of prior
tasks during subsequent learning. Amongst various strategies to tackle this,
replay based methods have emerged as preeminent, echoing biological memory
mechanisms. However, these methods are memory intensive, often preserving
entire data samples, an approach inconsistent with humans selective memory
retention of salient experiences. While some recent works have explored the
storage of only significant portions of data in episodic memory, the inherent
nature of partial data necessitates innovative retrieval mechanisms. Current
solutions, like inpainting, approximate full data reconstruction from partial
cues, a method that diverges from genuine human memory processes. Addressing
these nuances, this paper presents the Saliency Guided Hidden Associative
Replay for Continual Learning. This novel framework synergizes associative
memory with replay-based strategies. SHARC primarily archives salient data
segments via sparse memory encoding. Importantly, by harnessing associative
memory paradigms, it introduces a content focused memory retrieval mechanism,
promising swift and near-perfect recall, bringing CL a step closer to authentic
human memory processes. Extensive experimental results demonstrate the
effectiveness of our proposed method for various continual learning tasks.
Related papers
- Stable Hadamard Memory: Revitalizing Memory-Augmented Agents for Reinforcement Learning [64.93848182403116]
Current deep-learning memory models struggle in reinforcement learning environments that are partially observable and long-term.
We introduce the Stable Hadamard Memory, a novel memory model for reinforcement learning agents.
Our approach significantly outperforms state-of-the-art memory-based methods on challenging partially observable benchmarks.
arXiv Detail & Related papers (2024-10-14T03:50:17Z) - TEAL: New Selection Strategy for Small Buffers in Experience Replay Class Incremental Learning [7.627299398469962]
We introduce TEAL, a novel approach to populate the memory with exemplars.
We show that TEAL improves the average accuracy of the SOTA method XDER as well as ER and ER-ACE on several image recognition benchmarks.
arXiv Detail & Related papers (2024-06-30T12:09:08Z) - Adversarially Diversified Rehearsal Memory (ADRM): Mitigating Memory Overfitting Challenge in Continual Learning [0.0]
Continual learning focuses on learning non-stationary data distribution without forgetting previous knowledge.
Rehearsal-based approaches are commonly used to combat catastrophic forgetting.
We introduce the Adversarially Diversified Rehearsal Memory to address the memory overfitting challenge.
arXiv Detail & Related papers (2024-05-20T06:56:43Z) - Empowering Working Memory for Large Language Model Agents [9.83467478231344]
This paper explores the potential of applying cognitive psychology's working memory frameworks to large language models (LLMs)
An innovative model is proposed incorporating a centralized Working Memory Hub and Episodic Buffer access to retain memories across episodes.
This architecture aims to provide greater continuity for nuanced contextual reasoning during intricate tasks and collaborative scenarios.
arXiv Detail & Related papers (2023-12-22T05:59:00Z) - Saliency-Augmented Memory Completion for Continual Learning [8.243137410556495]
How to forget is a problem continual learning must address.
Our paper proposes a new saliency-augmented memory completion framework for continual learning.
arXiv Detail & Related papers (2022-12-26T18:06:39Z) - Pin the Memory: Learning to Generalize Semantic Segmentation [68.367763672095]
We present a novel memory-guided domain generalization method for semantic segmentation based on meta-learning framework.
Our method abstracts the conceptual knowledge of semantic classes into categorical memory which is constant beyond the domains.
arXiv Detail & Related papers (2022-04-07T17:34:01Z) - Learning Bayesian Sparse Networks with Full Experience Replay for
Continual Learning [54.7584721943286]
Continual Learning (CL) methods aim to enable machine learning models to learn new tasks without catastrophic forgetting of those that have been previously mastered.
Existing CL approaches often keep a buffer of previously-seen samples, perform knowledge distillation, or use regularization techniques towards this goal.
We propose to only activate and select sparse neurons for learning current and past tasks at any stage.
arXiv Detail & Related papers (2022-02-21T13:25:03Z) - Learning Fast, Learning Slow: A General Continual Learning Method based
on Complementary Learning System [13.041607703862724]
We propose CLS-ER, a novel dual memory experience replay (ER) method.
New knowledge is acquired while aligning the decision boundaries with the semantic memories.
Our approach achieves state-of-the-art performance on standard benchmarks.
arXiv Detail & Related papers (2022-01-29T15:15:23Z) - Learning to Rehearse in Long Sequence Memorization [107.14601197043308]
Existing reasoning tasks often have an important assumption that the input contents can be always accessed while reasoning.
Memory augmented neural networks introduce a human-like write-read memory to compress and memorize the long input sequence in one pass.
But they have two serious drawbacks: 1) they continually update the memory from current information and inevitably forget the early contents; 2) they do not distinguish what information is important and treat all contents equally.
We propose the Rehearsal Memory to enhance long-sequence memorization by self-supervised rehearsal with a history sampler.
arXiv Detail & Related papers (2021-06-02T11:58:30Z) - Self-Attentive Associative Memory [69.40038844695917]
We propose to separate the storage of individual experiences (item memory) and their occurring relationships (relational memory)
We achieve competitive results with our proposed two-memory model in a diversity of machine learning tasks.
arXiv Detail & Related papers (2020-02-10T03:27:48Z) - Encoding-based Memory Modules for Recurrent Neural Networks [79.42778415729475]
We study the memorization subtask from the point of view of the design and training of recurrent neural networks.
We propose a new model, the Linear Memory Network, which features an encoding-based memorization component built with a linear autoencoder for sequences.
arXiv Detail & Related papers (2020-01-31T11:14:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.