論文の概要: Applying Regression Conformal Prediction with Nearest Neighbors to time
series data
- arxiv url: http://arxiv.org/abs/2110.13031v1
- Date: Mon, 25 Oct 2021 15:11:32 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-26 17:40:08.211296
- Title: Applying Regression Conformal Prediction with Nearest Neighbors to time
series data
- Title(参考訳): 近隣住民による回帰等角予測を時系列データに適用する
- Authors: Samya Tajmouati, Bouazza El Wahbi and Mohammed Dakkoun
- Abstract要約: 本稿では,時系列データにおける共形予測器を用いて,信頼可能な予測区間を構築する方法を提案する。
提案手法は,FPTO-WNN手法の高速パラメータチューニング手法を基礎アルゴリズムとして用いた。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we apply conformal prediction to time series data. Conformal
prediction isa method that produces predictive regions given a confidence
level. The regions outputs arealways valid under the exchangeability
assumption. However, this assumption does not holdfor the time series data
because there is a link among past, current, and future
observations.Consequently, the challenge of applying conformal predictors to
the problem of time seriesdata lies in the fact that observations of a time
series are dependent and therefore do notmeet the exchangeability assumption.
This paper aims to present a way of constructingreliable prediction intervals
by using conformal predictors in the context of time series. Weuse the nearest
neighbors method based on the fast parameters tuning technique in theweighted
nearest neighbors (FPTO-WNN) approach as the underlying algorithm. Dataanalysis
demonstrates the effectiveness of the proposed approach.
- Abstract(参考訳): 本稿では,時系列データに共形予測を適用する。
コンフォーマル予測は、信頼度の高い予測領域を生成する方法である。
領域出力は、交換可能性仮定の下で有効である。
しかし、過去、現在、将来の観測にリンクがあるため、この仮定は時系列データに留まらず、時系列データの問題に共形予測器を適用することの課題は、時系列の観測が依存しているという事実であり、したがって交換可能性の仮定を満たさないことである。
本稿では,時系列の文脈における共形予測器を用いて,信頼可能な予測区間を構築する方法を提案する。
重み付き近距離近傍 (fpto-wnn) 法における高速パラメータチューニング手法に基づく近距離近傍法を基礎アルゴリズムとして用いる。
データ分析は提案手法の有効性を示す。
関連論文リスト
- Distribution-Free Conformal Joint Prediction Regions for Neural Marked Temporal Point Processes [4.324839843326325]
我々は、共形予測の枠組みを用いて、ニューラルTPPモデルにおける不確実性に対するより信頼性の高い手法を開発した。
主な目的は、イベントの到着時刻とマークに対する分布自由な共同予測領域を生成し、有限サンプルの限界カバレッジを保証することである。
論文 参考訳(メタデータ) (2024-01-09T15:28:29Z) - When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
確率的階層的時系列予測は時系列予測の重要な変種である。
ほとんどの手法は点予測に焦点を絞っており、確率的確率分布を十分に調整していない。
ProFHiTは,階層全体の予測分布を共同でモデル化する完全確率的階層予測モデルである。
論文 参考訳(メタデータ) (2023-10-17T20:30:16Z) - Conditional validity of heteroskedastic conformal regression [12.905195278168506]
等角予測と分割等角予測は、統計的保証付き予測間隔を推定するための分布自由なアプローチを提供する。
近年の研究では、分割共形予測は、限界被覆に着目した場合、最先端の予測間隔を生み出すことが示されている。
本稿では,正規化やモンドリアン等式予測などの手法を用いて,予測間隔の構築方法について,新たな光を当てることを試みる。
論文 参考訳(メタデータ) (2023-09-15T11:10:46Z) - Exogenous Data in Forecasting: FARM -- A New Measure for Relevance
Evaluation [62.997667081978825]
FARM - Forward Relevance Aligned Metricという新しいアプローチを導入する。
我々のフォワード法は、その後のデータポイントの変化を時系列に合わせるために比較する角測度に依存する。
第1の検証ステップとして、FARMアプローチの合成信号・代表信号への適用について述べる。
論文 参考訳(メタデータ) (2023-04-21T15:22:33Z) - Sequential Predictive Conformal Inference for Time Series [16.38369532102931]
逐次データ(例えば時系列)に対する分布自由共形予測アルゴリズムを提案する。
具体的には,時系列データは交換不可能であり,既存の共形予測アルゴリズムでは適用できない性質を具体的に説明する。
論文 参考訳(メタデータ) (2022-12-07T05:07:27Z) - Predictive Inference with Feature Conformal Prediction [80.77443423828315]
本稿では,特徴空間への共形予測の範囲を拡大する特徴共形予測を提案する。
理論的観点からは、特徴共形予測は軽度の仮定の下で正則共形予測よりも確実に優れていることを示す。
提案手法は,バニラ共形予測だけでなく,他の適応共形予測手法と組み合わせることができる。
論文 参考訳(メタデータ) (2022-10-01T02:57:37Z) - When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
確率的階層的時系列予測は時系列予測の重要な変種である。
ほとんどの手法は点予測に焦点を絞っており、確率的確率分布を十分に調整していない。
ProFHiTは,階層全体の予測分布を共同でモデル化する完全確率的階層予測モデルである。
論文 参考訳(メタデータ) (2022-06-16T06:13:53Z) - TACTiS: Transformer-Attentional Copulas for Time Series [76.71406465526454]
時間変化量の推定は、医療や金融などの分野における意思決定の基本的な構成要素である。
本稿では,アテンションベースデコーダを用いて関節分布を推定する多元的手法を提案する。
本研究では,本モデルが実世界の複数のデータセットに対して最先端の予測を生成することを示す。
論文 参考訳(メタデータ) (2022-02-07T21:37:29Z) - CovarianceNet: Conditional Generative Model for Correct Covariance
Prediction in Human Motion Prediction [71.31516599226606]
本稿では,将来の軌道の予測分布に関連する不確かさを正確に予測する手法を提案する。
我々のアプローチであるCovariaceNetは、ガウス潜在変数を持つ条件付き生成モデルに基づいている。
論文 参考訳(メタデータ) (2021-09-07T09:38:24Z) - Adaptive Conformal Inference Under Distribution Shift [0.0]
本研究では,未知の方法でデータ生成分布を時間とともに変化させるオンライン環境において,予測セットを形成する手法を開発した。
我々のフレームワークは、任意のブラックボックスメソッドと組み合わせられる一般的なラッパーを提供するために、共形推論のアイデアに基づいている。
我々は,2つの実世界のデータセット上で適応型共形推論法を検証し,その予測が可視的および有意な分布シフトに対して堅牢であることを見出した。
論文 参考訳(メタデータ) (2021-06-01T01:37:32Z) - Conformal prediction for time series [16.38369532102931]
textttEnbPIは、共形予測(CP)と密接に関連しているが、データ交換性を必要としないアンサンブル予測をラップする。
提案手法の有効性を実証するため,広範囲なシミュレーションと実データ解析を行った。
論文 参考訳(メタデータ) (2020-10-18T21:05:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。