論文の概要: Detected the steerability bounds of the generalized Werner states via
BackPropagation neural network
- arxiv url: http://arxiv.org/abs/2110.13379v1
- Date: Tue, 26 Oct 2021 03:13:25 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-10 05:50:59.648729
- Title: Detected the steerability bounds of the generalized Werner states via
BackPropagation neural network
- Title(参考訳): BackPropagation Neural Networkによる一般化Werner状態の安定性境界の検出
- Authors: Jun Zhang, Kan He, Ying Zhang, Yu-Yang Hao, Jin-Chuan Hou, Fang-Peng
Lan, Bao-Ning Niu
- Abstract要約: エラーバックプロパゲーションニューラルネットワークを用いて、任意の2量子ビット量子状態が制御可能であるかどうかを判定する。
BPニューラルネットワークを用いて、高性能な量子ステアリング分類器を実現するために、いくつかのモデルを構築することができる。
- 参考スコア(独自算出の注目度): 6.127337940241851
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We use error BackPropagation (BP) neural network to determine whether an
arbitrary two-qubit quantum state is steerable and optimize the steerability
bounds of the generalized Werner state. The results show that no matter how we
choose the features for the quantum states, we can use the BP neural network to
construct several models to realize high-performance quantum steering
classifiers compared with the support vector machine (SVM). In addition, we
predict the steerability bounds of the generalized Werner states by using the
classifiers which are newly constructed by the BP neural network, that is, the
predicted steerability bounds are closer to the theoretical bounds. In
particular, high-performance classifiers with partial information of the
quantum states which we only need to measure in three fixed measurement
directions are obtained.
- Abstract(参考訳): 誤差バックプロパゲーション(BP)ニューラルネットワークを用いて、任意の2量子ビット量子状態がステアブルかどうかを判定し、一般化されたWerner状態のステアビリティ境界を最適化する。
その結果、量子状態の特徴をどのように選択したとしても、BPニューラルネットワークを用いて複数のモデルを構築し、サポートベクトルマシン(SVM)と比較して高性能な量子ステアリング分類器を実現することができた。
さらに、BPニューラルネットワークによって新たに構築された分類器を用いて、一般化されたWerner状態のステアビリティ境界を予測し、予測されたステアビリティ境界が理論的境界に近いように予測する。
特に,3つの測定方向のみを測定する必要がある量子状態の部分的情報を持つ高性能分類器が得られた。
関連論文リスト
- Emergence of global receptive fields capturing multipartite quantum correlations [0.565473932498362]
量子物理学において、波動関数レベルで明確に定義された構造を持つ単純なデータでさえ、非常に複雑な相関によって特徴づけられる。
量子統計学を学習しながら、ニューラルネットワークの重み空間をモニタリングすることで、複雑な多部パターンに関する物理的直観を発達させることができることを示す。
この結果から,非局所パターンを用いたデータ処理のための畳み込みニューラルネットワークの構築について,新たな知見が得られた。
論文 参考訳(メタデータ) (2024-08-23T12:45:40Z) - Deep Neural Networks as Variational Solutions for Correlated Open
Quantum Systems [0.0]
より強力なモデルで直接密度行列をパラメータ化することで、より良い変分アンザッツ関数が得られることを示す。
本稿では, 散逸的一次元逆場イジングモデルと2次元散逸的ハイゼンベルクモデルについて述べる。
論文 参考訳(メタデータ) (2024-01-25T13:41:34Z) - Scalable Neural Network Kernels [22.299704296356836]
我々は、通常のフィードフォワード層(FFL)を近似できるスケーラブルニューラルネットワークカーネル(SNNK)を導入する。
また、深層ニューラルネットワークアーキテクチャのコンパクト化にSNNKを適用するニューラルネットワークバンドルプロセスについても紹介する。
我々のメカニズムは、競争精度を維持しながら、トレーニング可能なパラメータの最大5倍の削減を可能にする。
論文 参考訳(メタデータ) (2023-10-20T02:12:56Z) - Benign Overfitting in Deep Neural Networks under Lazy Training [72.28294823115502]
データ分布が適切に分離された場合、DNNは分類のためのベイズ最適テスト誤差を達成できることを示す。
よりスムーズな関数との補間により、より一般化できることを示す。
論文 参考訳(メタデータ) (2023-05-30T19:37:44Z) - Towards Neural Variational Monte Carlo That Scales Linearly with System
Size [67.09349921751341]
量子多体問題(Quantum many-body problem)は、例えば高温超伝導体のようなエキゾチックな量子現象をデミストする中心である。
量子状態を表すニューラルネットワーク(NN)と変分モンテカルロ(VMC)アルゴリズムの組み合わせは、そのような問題を解決する上で有望な方法であることが示されている。
ベクトル量子化技術を用いて,VMCアルゴリズムの局所エネルギー計算における冗長性を利用するNNアーキテクチャVector-Quantized Neural Quantum States (VQ-NQS)を提案する。
論文 参考訳(メタデータ) (2022-12-21T19:00:04Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
本稿では,ノード間の局所的なメッセージパッシングをクロスゲート量子演算のシーケンスで学習する量子グラフ畳み込みネットワーク(QuanGCN)を提案する。
現代の量子デバイスから固有のノイズを緩和するために、ノードの接続をスパーズするためにスパース制約を適用します。
我々のQuanGCNは、いくつかのベンチマークグラフデータセットの古典的なアルゴリズムよりも機能的に同等か、さらに優れている。
論文 参考訳(メタデータ) (2022-11-09T21:43:16Z) - Hamiltonian Quantum Generative Adversarial Networks [4.806505912512235]
本稿では、未知の入力量子状態を生成することを学ぶために、ハミルトン量子生成共振器ネットワーク(HQuGAN)を提案する。
提案手法は,多体多体量子状態に絡み合った多体量子状態の学習能力を数値的に示す。
論文 参考訳(メタデータ) (2022-11-04T16:53:55Z) - Optimal quantum control via genetic algorithms for quantum state
engineering in driven-resonator mediated networks [68.8204255655161]
進化的アルゴリズムに基づく量子状態工学には、機械学習によるアプローチを採用しています。
我々は、単一のモード駆動マイクロ波共振器を介して相互作用する、量子ビットのネットワーク(直接結合のない人工原子の状態に符号化された)を考える。
アルゴリズムは理想的なノイズフリー設定で訓練されているにもかかわらず、高い量子忠実度とノイズに対するレジリエンスを観測する。
論文 参考訳(メタデータ) (2022-06-29T14:34:00Z) - Group Convolutional Neural Networks Improve Quantum State Accuracy [1.52292571922932]
特定の対称性を持つ量子状態に対して、最大表現モデルを作成する方法を示す。
我々は,グループ同変畳み込みネットワーク(G-CNN) citecohen2016groupを実装し,メモリ使用量を増やすことなく,性能改善を実現することを実証した。
論文 参考訳(メタデータ) (2021-04-11T19:45:10Z) - Understanding Generalization in Deep Learning via Tensor Methods [53.808840694241]
圧縮の観点から,ネットワークアーキテクチャと一般化可能性の関係について理解を深める。
本稿では、ニューラルネットワークの圧縮性と一般化性を強く特徴付ける、直感的で、データ依存的で、測定が容易な一連の特性を提案する。
論文 参考訳(メタデータ) (2020-01-14T22:26:57Z) - Entanglement Classification via Neural Network Quantum States [58.720142291102135]
本稿では、学習ツールと量子絡み合いの理論を組み合わせて、純状態における多部量子ビット系の絡み合い分類を行う。
我々は、ニューラルネットワーク量子状態(NNS)として知られる制限されたボルツマンマシン(RBM)アーキテクチャにおいて、人工ニューラルネットワークを用いた量子システムのパラメータ化を用いる。
論文 参考訳(メタデータ) (2019-12-31T07:40:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。