論文の概要: Towards Neural Variational Monte Carlo That Scales Linearly with System
Size
- arxiv url: http://arxiv.org/abs/2212.11296v1
- Date: Wed, 21 Dec 2022 19:00:04 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-23 13:40:27.432935
- Title: Towards Neural Variational Monte Carlo That Scales Linearly with System
Size
- Title(参考訳): システムサイズと線形にスケールするニューラル変分モンテカルロに向けて
- Authors: Or Sharir, Garnet Kin-Lic Chan and Anima Anandkumar
- Abstract要約: 量子多体問題(Quantum many-body problem)は、例えば高温超伝導体のようなエキゾチックな量子現象をデミストする中心である。
量子状態を表すニューラルネットワーク(NN)と変分モンテカルロ(VMC)アルゴリズムの組み合わせは、そのような問題を解決する上で有望な方法であることが示されている。
ベクトル量子化技術を用いて,VMCアルゴリズムの局所エネルギー計算における冗長性を利用するNNアーキテクチャVector-Quantized Neural Quantum States (VQ-NQS)を提案する。
- 参考スコア(独自算出の注目度): 67.09349921751341
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum many-body problems are some of the most challenging problems in
science and are central to demystifying some exotic quantum phenomena, e.g.,
high-temperature superconductors. The combination of neural networks (NN) for
representing quantum states, coupled with the Variational Monte Carlo (VMC)
algorithm, has been shown to be a promising method for solving such problems.
However, the run-time of this approach scales quadratically with the number of
simulated particles, constraining the practically usable NN to - in machine
learning terms - minuscule sizes (<10M parameters). Considering the many
breakthroughs brought by extreme NN in the +1B parameters scale to other
domains, lifting this constraint could significantly expand the set of quantum
systems we can accurately simulate on classical computers, both in size and
complexity. We propose a NN architecture called Vector-Quantized Neural Quantum
States (VQ-NQS) that utilizes vector-quantization techniques to leverage
redundancies in the local-energy calculations of the VMC algorithm - the source
of the quadratic scaling. In our preliminary experiments, we demonstrate VQ-NQS
ability to reproduce the ground state of the 2D Heisenberg model across various
system sizes, while reporting a significant reduction of about ${\times}10$ in
the number of FLOPs in the local-energy calculation.
- Abstract(参考訳): 量子多体問題 (quantum many-body problem) は、科学における最も困難な問題の一つであり、例えば高温超伝導体のようなエキゾチックな量子現象を解明する中心である。
量子状態を表すニューラルネットワーク(NN)と変分モンテカルロ(VMC)アルゴリズムの組み合わせは、そのような問題を解決するための有望な方法であることが示されている。
しかし、このアプローチの実行時間はシミュレーション粒子の数と二乗的にスケールし、実際に使用可能なnnを、機械学習の用語ではマイナスサイズ(<10mパラメータ)に制限する。
+1Bパラメータの極端なNNによる多くのブレークスルーを考えると、この制約を解除することで、古典的コンピュータ上で正確にシミュレートできる量子システムの集合を、サイズと複雑さの両方で大幅に拡張することができる。
本稿では,ベクトル量子化技術を用いて,VMCアルゴリズムの局所エネルギー計算における冗長性を利用するNNアーキテクチャVector-Quantized Neural Quantum States (VQ-NQS)を提案する。
予備実験では,2次元ハイゼンベルクモデルの基底状態を様々なシステムサイズで再現するVQ-NQS能力を実証するとともに,局所エネルギー計算におけるFLOP数に対して約${\times}10$の大幅な削減を報告した。
関連論文リスト
- Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
ランダム量子スピン系の進化をモデル化するためにFNOを用いる。
量子波動関数全体の2n$の代わりに、コンパクトなハミルトン観測可能集合にFNOを適用する。
論文 参考訳(メタデータ) (2024-09-05T07:18:09Z) - Paths towards time evolution with larger neural-network quantum states [17.826631514127012]
我々は、傾斜したイジングモデルにおいて、常磁性から反強磁性相への量子クエンチを考える。
両タイプのネットワークに対して、予測時間依存変動モンテカルロ法(p-tVMC)は、非計画的手法よりも優れた性能を示すことを示す。
論文 参考訳(メタデータ) (2024-06-05T15:32:38Z) - Entanglement Forging with generative neural network models [0.0]
ハイブリッド量子-古典的変分アンゼ」は、量子リソースオーバーヘッドを下げるために絡み合いを鍛えることができることを示す。
この方法は観測者の期待値の固定精度を達成するのに必要な測定値の数で効率的である。
論文 参考訳(メタデータ) (2022-05-02T14:29:17Z) - Variational learning of quantum ground states on spiking neuromorphic
hardware [0.0]
高次元サンプリング空間と過渡自己相関は、難しい計算ボトルネックを伴うニューラルネットワークに直面する。
従来のニューラルネットワークと比較して、物理モデルデバイスは高速で効率的で本質的に並列な基板を提供する。
変動エネルギー最小化による量子スピンモデルの基底状態を表すニューロモルフィックチップの能力を示す。
論文 参考訳(メタデータ) (2021-09-30T14:39:45Z) - Random Sampling Neural Network for Quantum Many-Body Problems [0.0]
本稿では,対話型多体システムのランダムサンプリング行列要素に対して,自己教師型学習手法を用いてパターン認識手法を用いたランダムサンプリングニューラルネットワーク(Random Smpling Neural Networks, RNN)を提案する。
RSNNの適用性をテストするために、横フィールドを持つIsingモデル、Fermi-Hubbardモデル、Spin-$1/2$$XXZ$モデルなど、正確に解決可能ないくつかの1Dモデルが使用されている。
論文 参考訳(メタデータ) (2020-11-10T15:52:44Z) - A Neural-Network Variational Quantum Algorithm for Many-Body Dynamics [15.435967947933404]
量子多体系の時間進化をシミュレートするニューラルネットワーク-ネットワーク変分量子アルゴリズムを提案する。
提案アルゴリズムは、測定コストの低い短期量子コンピュータに効率よく実装することができる。
論文 参考訳(メタデータ) (2020-08-31T02:54:09Z) - Variational Monte Carlo calculations of $\mathbf{A\leq 4}$ nuclei with
an artificial neural-network correlator ansatz [62.997667081978825]
光核の基底状態波動関数をモデル化するためのニューラルネットワーク量子状態アンサッツを導入する。
我々は、Aleq 4$核の結合エネルギーと点核密度を、上位のピオンレス実効場理論から生じるものとして計算する。
論文 参考訳(メタデータ) (2020-07-28T14:52:28Z) - On the learnability of quantum neural networks [132.1981461292324]
本稿では,量子ニューラルネットワーク(QNN)の学習可能性について考察する。
また,概念をQNNで効率的に学習することができれば,ゲートノイズがあってもQNNで効果的に学習できることを示す。
論文 参考訳(メタデータ) (2020-07-24T06:34:34Z) - Probing the Universality of Topological Defect Formation in a Quantum
Annealer: Kibble-Zurek Mechanism and Beyond [46.39654665163597]
一次元横フィールドイジングモデルによるトポロジカル欠陥生成の実験的検討について報告する。
位相フリップ誤差を伴う開系量子力学のKZMにより量子シミュレータの結果を実際に説明できることが判明した。
これは、環境からの孤立を仮定する一般化KZM理論の理論的予測が、その元のスコープを越えてオープンシステムに適用されることを意味する。
論文 参考訳(メタデータ) (2020-01-31T02:55:35Z) - Entanglement Classification via Neural Network Quantum States [58.720142291102135]
本稿では、学習ツールと量子絡み合いの理論を組み合わせて、純状態における多部量子ビット系の絡み合い分類を行う。
我々は、ニューラルネットワーク量子状態(NNS)として知られる制限されたボルツマンマシン(RBM)アーキテクチャにおいて、人工ニューラルネットワークを用いた量子システムのパラメータ化を用いる。
論文 参考訳(メタデータ) (2019-12-31T07:40:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。