論文の概要: Gradient representations in ReLU networks as similarity functions
- arxiv url: http://arxiv.org/abs/2110.13581v1
- Date: Tue, 26 Oct 2021 11:29:10 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-27 22:15:41.445267
- Title: Gradient representations in ReLU networks as similarity functions
- Title(参考訳): 類似関数としてのReLUネットワークにおける勾配表現
- Authors: D\'aniel R\'acz, B\'alint Dar\'oczy
- Abstract要約: 本稿では,ReLU(Rectified Linear Unit)アクティベート時にネットワークの接点空間をどのように利用して決定を洗練させるかを検討する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Feed-forward networks can be interpreted as mappings with linear decision
surfaces at the level of the last layer. We investigate how the tangent space
of the network can be exploited to refine the decision in case of ReLU
(Rectified Linear Unit) activations. We show that a simple Riemannian metric
parametrized on the parameters of the network forms a similarity function at
least as good as the original network and we suggest a sparse metric to
increase the similarity gap.
- Abstract(参考訳): フィードフォワードネットワークは、最後の層のレベルで線形決定曲面を持つマッピングとして解釈できる。
本稿では,ReLU(Rectified Linear Unit)アクティベート時にネットワークの接点空間をどのように利用して決定を洗練させるかを検討する。
ネットワークのパラメータにパラメトリ化された単純なリーマン計量は、少なくとも元のネットワークと同等の類似度関数を形成し、類似度ギャップを増加させるためのスパース計量を提案する。
関連論文リスト
- The Geometric Structure of Fully-Connected ReLU Layers [0.0]
ニューラルネットワークにおいて,$d$次元の完全連結ReLU層の幾何学構造を定式化し,解釈する。
このようなネットワークによって生成される決定境界の幾何学的複雑さに関する結果を提供するとともに、アフィン変換を変調することで、そのようなネットワークは$d$の異なる決定境界しか生成できないことを示す。
論文 参考訳(メタデータ) (2023-10-05T11:54:07Z) - ReLU Neural Networks with Linear Layers are Biased Towards Single- and Multi-Index Models [9.96121040675476]
この原稿は、2層以上の深さのニューラルネットワークによって学習された関数の性質が予測にどのように影響するかを考察している。
我々のフレームワークは、すべて同じキャパシティを持つが表現コストが異なる、様々な深さのネットワーク群を考慮に入れている。
論文 参考訳(メタデータ) (2023-05-24T22:10:12Z) - Reparameterization through Spatial Gradient Scaling [69.27487006953852]
リパラメータ化は、学習中に畳み込み層を等価なマルチブランチ構造に変換することによって、ディープニューラルネットワークの一般化を改善することを目的としている。
本稿では,畳み込みネットワークにおける重み間の学習焦点を再分配する空間勾配スケーリング手法を提案する。
論文 参考訳(メタデータ) (2023-03-05T17:57:33Z) - Entangled Residual Mappings [59.02488598557491]
残余接続の構造を一般化するために、絡み合った残余写像を導入する。
絡み合い残余写像は、アイデンティティスキップ接続を特別な絡み合い写像に置き換える。
絡み合った写像は、様々な深層モデルにまたがる特徴の反復的洗練を保ちながら、畳み込みネットワークにおける表現学習プロセスに影響を及ぼすことを示す。
論文 参考訳(メタデータ) (2022-06-02T19:36:03Z) - On the Effective Number of Linear Regions in Shallow Univariate ReLU
Networks: Convergence Guarantees and Implicit Bias [50.84569563188485]
我々は、ラベルが$r$のニューロンを持つターゲットネットワークの符号によって決定されるとき、勾配流が方向収束することを示す。
我々の結果は、標本サイズによらず、幅が$tildemathcalO(r)$である、緩やかなオーバーパラメータ化をすでに維持しているかもしれない。
論文 参考訳(メタデータ) (2022-05-18T16:57:10Z) - The Role of Linear Layers in Nonlinear Interpolating Networks [13.25706838589123]
我々のフレームワークは、すべて同じキャパシティを持つが、暗黙的に定義された表現コストを持つ、様々な深さのネットワークのファミリーを考察する。
ニューラルネットワークアーキテクチャによって誘導される関数の表現コストは、関数を表現するためにネットワークに必要な2乗重みの最小和である。
この結果から,ReLUネットワークに線形層を追加することで,ReLUユニットのアライメントとスパシティの複雑な相互作用を反映した表現コストが得られることがわかった。
論文 参考訳(メタデータ) (2022-02-02T02:33:24Z) - Mean-field Analysis of Piecewise Linear Solutions for Wide ReLU Networks [83.58049517083138]
勾配勾配勾配を用いた2層ReLUネットワークについて検討する。
SGDは単純な解に偏りがあることが示される。
また,データポイントと異なる場所で結び目が発生するという経験的証拠も提供する。
論文 参考訳(メタデータ) (2021-11-03T15:14:20Z) - Clustering-Based Interpretation of Deep ReLU Network [17.234442722611803]
我々はReLU関数の非線形挙動が自然なクラスタリングを引き起こすことを認識している。
本稿では,完全連結フィードフォワードReLUニューラルネットワークの解釈可能性を高める手法を提案する。
論文 参考訳(メタデータ) (2021-10-13T09:24:11Z) - Learning Connectivity of Neural Networks from a Topological Perspective [80.35103711638548]
本稿では,ネットワークを解析のための完全なグラフに表現するためのトポロジ的視点を提案する。
接続の規模を反映したエッジに学習可能なパラメータを割り当てることにより、学習プロセスを異なる方法で行うことができる。
この学習プロセスは既存のネットワークと互換性があり、より大きな検索空間と異なるタスクへの適応性を持っている。
論文 参考訳(メタデータ) (2020-08-19T04:53:31Z) - Network Adjustment: Channel Search Guided by FLOPs Utilization Ratio [101.84651388520584]
本稿では,ネットワークの精度をFLOPの関数として考慮した,ネットワーク調整という新しいフレームワークを提案する。
標準画像分類データセットと幅広いベースネットワークの実験は、我々のアプローチの有効性を実証している。
論文 参考訳(メタデータ) (2020-04-06T15:51:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。