論文の概要: Hybrid physics-based and data-driven modeling with calibrated
uncertainty for lithium-ion battery degradation diagnosis and prognosis
- arxiv url: http://arxiv.org/abs/2110.13661v1
- Date: Mon, 25 Oct 2021 11:14:12 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-27 16:10:07.770276
- Title: Hybrid physics-based and data-driven modeling with calibrated
uncertainty for lithium-ion battery degradation diagnosis and prognosis
- Title(参考訳): リチウムイオン電池劣化診断と予後のための校正不確かさを用いたハイブリッド物理とデータ駆動モデリング
- Authors: Jing Lin, Yu Zhang, Edwin Khoo
- Abstract要約: リチウムイオン電池(LIB)は今後数十年で電化を促進する鍵となる。
LIB劣化の不十分な理解は、バッテリーの耐久性と安全性を制限する重要なボトルネックである。
本稿では,オンライン診断とバッテリー劣化の診断のためのハイブリッド物理とデータ駆動モデリングを提案する。
- 参考スコア(独自算出の注目度): 6.7143928677892335
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Advancing lithium-ion batteries (LIBs) in both design and usage is key to
promoting electrification in the coming decades to mitigate human-caused
climate change. Inadequate understanding of LIB degradation is an important
bottleneck that limits battery durability and safety. Here, we propose hybrid
physics-based and data-driven modeling for online diagnosis and prognosis of
battery degradation. Compared to existing battery modeling efforts, we aim to
build a model with physics as its backbone and statistical learning techniques
as enhancements. Such a hybrid model has better generalizability and
interpretability together with a well-calibrated uncertainty associated with
its prediction, rendering it more valuable and relevant to safety-critical
applications under realistic usage scenarios.
- Abstract(参考訳): リチウムイオン電池(LIB)の設計と使用の強化は、今後数十年で人為的な気候変動を緩和するための電化を促進する鍵となる。
LIB劣化の不十分な理解は、バッテリーの耐久性と安全性を制限する重要なボトルネックである。
本稿では,オンライン診断とバッテリー劣化診断のためのハイブリッド物理とデータ駆動モデリングを提案する。
既存のバッテリモデリングと比較して,物理をバックボーンとし,統計的学習技術を改良したモデルの構築を目指している。
このようなハイブリッドモデルは、予測にまつわる明確な不確実性とともに、より一般化可能性と解釈可能性が高く、現実的な利用シナリオの下では、より価値が高く、安全クリティカルなアプリケーションと関係がある。
関連論文リスト
- DiffBatt: A Diffusion Model for Battery Degradation Prediction and Synthesis [0.7342676110939172]
本稿では,電池劣化予測と合成のための新しい汎用モデルDiffBattを紹介する。
老化挙動の不確実性を捉える確率モデルと、バッテリー劣化をシミュレートする生成モデルとして機能する。
すべてのデータセットの平均RMSEは196サイクルであり、他のモデルよりも優れ、より優れた一般化性を示す。
論文 参考訳(メタデータ) (2024-10-31T12:53:53Z) - A Scientific Machine Learning Approach for Predicting and Forecasting Battery Degradation in Electric Vehicles [1.393499936476792]
我々は,Scientific Machine Learningフレームワークを用いて,電池劣化の予測と長期予測を行う新しい手法を提案する。
我々は、予測と予測の両方が実用的な条件を反映していることを保証するために、地中真実データを組み込んだ。
我々のアプローチは、エネルギーシステムの持続可能性に貢献し、よりクリーンで責任あるエネルギーソリューションへの世界的移行を加速させる。
論文 参考訳(メタデータ) (2024-10-18T09:57:59Z) - Generating Comprehensive Lithium Battery Charging Data with Generative AI [24.469319419012745]
本研究では、生成AIモデルの条件として、EOL(End of Life)とECL(Equivalent Cycle Life)を紹介する。
CVAEモデルに埋め込み層を組み込むことにより, RCVAE(Refined Conditional Variational Autoencoder)を開発した。
準ビデオ形式にプリプロセッシングすることで、電圧、電流、温度、充電容量を含む電気化学データの総合的な合成を実現する。
この方法は、リチウム電池データの人工合成のための新しい研究領域を開拓する、包括的な電気化学データセットを提供する。
論文 参考訳(メタデータ) (2024-04-11T09:08:45Z) - Photovoltaic power forecasting using quantum machine learning [32.73124984242397]
太陽パネルの出力予測はエネルギー遷移を促進するために重要であるが、太陽エネルギーの変動性と非線形の性質により複雑である。
我々の研究は、これらの複雑さに対処するために設計されたハイブリッド量子ニューラルネットワークを中心とした一連のソリューションを紹介した。
最初の提案されたモデルであるHybrid Quantum Long Short-Term Memoryは、テスト対象のモデルを平均絶対誤差と平均二乗誤差を40%以上下回っている。
2つ目のモデルであるHybrid Quantum Sequence-to-Sequence Neural Networkは、事前気象データを必要とせずに、任意の時間間隔に対して平均絶対誤差を16%低くして、光電力を予測する。
論文 参考訳(メタデータ) (2023-12-27T02:37:46Z) - Cerberus: A Deep Learning Hybrid Model for Lithium-Ion Battery Aging
Estimation and Prediction Based on Relaxation Voltage Curves [7.07637687957493]
本稿では,ディープラーニングに基づくキャパシティ老化推定と予測のためのハイブリッドモデルを提案する。
提案手法は, チャージサイクルと放電サイクルを含む新しいデータセットに対して, 様々な速度で検証する。
論文 参考訳(メタデータ) (2023-08-15T15:07:32Z) - Your Autoregressive Generative Model Can be Better If You Treat It as an
Energy-Based One [83.5162421521224]
本稿では,自己回帰生成モデルの学習のための独自のE-ARM法を提案する。
E-ARMは、よく設計されたエネルギーベースの学習目標を活用する。
我々は、E-ARMを効率的に訓練でき、露光バイアス問題を緩和できることを示した。
論文 参考訳(メタデータ) (2022-06-26T10:58:41Z) - Enhanced physics-constrained deep neural networks for modeling vanadium
redox flow battery [62.997667081978825]
本稿では,物理制約付き深部ニューラルネットワーク(PCDNN)による高精度電圧予測手法を提案する。
ePCDNNは、電圧放電曲線のテール領域を含む電荷放電サイクルを通して、電圧応答を正確にキャプチャすることができる。
論文 参考訳(メタデータ) (2022-03-03T19:56:24Z) - Prediction of liquid fuel properties using machine learning models with
Gaussian processes and probabilistic conditional generative learning [56.67751936864119]
本研究の目的は、代替燃料の物理的特性を予測するためのクロージャ方程式として機能する、安価で計算可能な機械学習モデルを構築することである。
これらのモデルは、MDシミュレーションのデータベースや、データ融合-忠実性アプローチによる実験的な測定を用いて訓練することができる。
その結果,MLモデルでは,広範囲の圧力および温度条件の燃料特性を正確に予測できることがわかった。
論文 参考訳(メタデータ) (2021-10-18T14:43:50Z) - Physics-informed CoKriging model of a redox flow battery [68.8204255655161]
レドックスフロー電池(RFB)は、大量のエネルギーを安価かつ効率的に貯蔵する機能を提供する。
RFBの充電曲線の高速かつ正確なモデルが必要であり、バッテリ容量と性能が向上する可能性がある。
RFBの電荷分配曲線を予測する多相モデルを構築した。
論文 参考訳(メタデータ) (2021-06-17T00:49:55Z) - Modified Gaussian Process Regression Models for Cyclic Capacity
Prediction of Lithium-ion Batteries [5.663192900261267]
本稿では,リチウムイオン電池の容量予測のための機械学習によるデータ駆動モデルの開発について述べる。
開発モデルは, 種々のサイクリングパターンを有する酸化ニッケル (MCN) リチウムイオン電池と比較した。
論文 参考訳(メタデータ) (2020-12-31T19:05:27Z) - Universal Battery Performance and Degradation Model for Electric
Aircraft [52.77024349608834]
電動垂直離着陸機(eVTOL)の設計、解析、運用には、Liイオン電池の性能の迅速かつ正確な予測が必要である。
我々は,eVTOLのデューティサイクルに特有の電池性能と熱的挙動のデータセットを生成する。
このデータセットを用いて,物理インフォームド機械学習を用いた電池性能・劣化モデル(Cellfit)を開発した。
論文 参考訳(メタデータ) (2020-07-06T16:10:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。