論文の概要: A deep learning based surrogate model for stochastic simulators
- arxiv url: http://arxiv.org/abs/2110.13809v1
- Date: Sun, 24 Oct 2021 11:38:47 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-27 14:23:48.221114
- Title: A deep learning based surrogate model for stochastic simulators
- Title(参考訳): 確率シミュレータのための深層学習に基づく代理モデル
- Authors: Akshay Thakur and Souvik Chakraborty
- Abstract要約: シミュレータのための深層学習に基づく代理モデルを提案する。
我々は損失関数として条件付き最大平均誤差(CMMD)を利用する。
その結果,提案手法の優れた性能が得られた。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We propose a deep learning-based surrogate model for stochastic simulators.
The basic idea is to use generative neural network to approximate the
stochastic response. The challenge with such a framework resides in designing
the network architecture and selecting loss-function suitable for stochastic
response. While we utilize a simple feed-forward neural network, we propose to
use conditional maximum mean discrepancy (CMMD) as the loss-function. CMMD
exploits the property of reproducing kernel Hilbert space and allows capturing
discrepancy between the between the target and the neural network predicted
distributions. The proposed approach is mathematically rigorous, in the sense
that it makes no assumptions about the probability density function of the
response. Performance of the proposed approach is illustrated using four
benchmark problems selected from the literature. Results obtained indicate the
excellent performance of the proposed approach.
- Abstract(参考訳): 確率シミュレータのための深層学習に基づく代理モデルを提案する。
基本的な考え方は、生成ニューラルネットワークを使用して確率応答を近似することである。
このようなフレームワークの課題は、ネットワークアーキテクチャの設計と確率応答に適した損失関数の選択にある。
我々は、単純なフィードフォワードニューラルネットワークを用いて、損失関数として条件付き最大平均誤差(CMMD)を提案する。
cmmdはカーネルヒルベルト空間を再現する性質を利用し、ターゲットとニューラルネットワークの予測分布との間の不一致を捉えることができる。
提案手法は,応答の確率密度関数に関する仮定をしないという意味で,数学的に厳密である。
提案手法の性能を文献から選択した4つのベンチマーク問題を用いて示す。
その結果,提案手法の優れた性能を示した。
関連論文リスト
- Probabilistic MIMO U-Net: Efficient and Accurate Uncertainty Estimation
for Pixel-wise Regression [1.4528189330418977]
機械学習における不確実性推定は、予測モデルの信頼性と解釈可能性を高めるための最重要課題である。
画素ワイド回帰タスクに対するMIMO(Multiple-Input Multiple-Output)フレームワークの適応について述べる。
論文 参考訳(メタデータ) (2023-08-14T22:08:28Z) - Promises and Pitfalls of the Linearized Laplace in Bayesian Optimization [73.80101701431103]
線形化ラプラス近似(LLA)はベイズニューラルネットワークの構築に有効で効率的であることが示されている。
ベイズ最適化におけるLLAの有用性について検討し,その性能と柔軟性を強調した。
論文 参考訳(メタデータ) (2023-04-17T14:23:43Z) - Quantifying uncertainty for deep learning based forecasting and
flow-reconstruction using neural architecture search ensembles [0.8258451067861933]
本稿では,ディープニューラルネットワーク(DNN)の自動検出手法を提案するとともに,アンサンブルに基づく不確実性定量化にも有効であることを示す。
提案手法は,タスクの高パフォーマンスニューラルネットワークアンサンブルを検出するだけでなく,不確実性をシームレスに定量化する。
本研究では, 歴史的データからの予測と, 海面温度のスパースセンサからのフロー再構成という2つの課題に対して, この枠組みの有効性を実証する。
論文 参考訳(メタデータ) (2023-02-20T03:57:06Z) - On the optimization and pruning for Bayesian deep learning [1.0152838128195467]
重み空間上でニューラルネットワークを学習するための適応型変分ベイズアルゴリズムを提案する。
EM-MCMCアルゴリズムにより,ワンショットで最適化とモデルプルーニングを行うことができる。
我々の密度モデルは最先端の性能に到達でき、スパースモデルは以前提案したプルーニング方式と比較して非常によく機能する。
論文 参考訳(メタデータ) (2022-10-24T05:18:08Z) - Deep Learning Aided Laplace Based Bayesian Inference for Epidemiological
Systems [2.596903831934905]
本稿では,Laplace をベースとしたベイズ推定と ANN アーキテクチャを併用して ODE 軌道の近似を求めるハイブリッド手法を提案する。
本手法の有効性を,非分析的ソリューションを用いた疫学システム,Susceptible-Infectious-Demoved (SIR) モデルを用いて実証した。
論文 参考訳(メタデータ) (2022-10-17T09:02:41Z) - Exploiting Temporal Structures of Cyclostationary Signals for
Data-Driven Single-Channel Source Separation [98.95383921866096]
単一チャネルソース分離(SCSS)の問題点について検討する。
我々は、様々なアプリケーション領域に特に適するサイクロ定常信号に焦点を当てる。
本稿では,最小MSE推定器と競合するU-Netアーキテクチャを用いたディープラーニング手法を提案する。
論文 参考訳(メタデータ) (2022-08-22T14:04:56Z) - NUQ: Nonparametric Uncertainty Quantification for Deterministic Neural
Networks [151.03112356092575]
本研究では,Nadaraya-Watson の条件付きラベル分布の非パラメトリック推定に基づく分類器の予測の不確かさの測定方法を示す。
種々の実世界の画像データセットにおける不確実性推定タスクにおいて,本手法の強い性能を示す。
論文 参考訳(メタデータ) (2022-02-07T12:30:45Z) - Robust lEarned Shrinkage-Thresholding (REST): Robust unrolling for
sparse recover [87.28082715343896]
我々は、モデルミス特定を前進させるのに堅牢な逆問題を解決するためのディープニューラルネットワークについて検討する。
我々は,アルゴリズムの展開手法を根底にある回復問題のロバストバージョンに適用することにより,新しい堅牢なディープニューラルネットワークアーキテクチャを設計する。
提案したRESTネットワークは,圧縮センシングとレーダイメージングの両問題において,最先端のモデルベースおよびデータ駆動アルゴリズムを上回る性能を示す。
論文 参考訳(メタデータ) (2021-10-20T06:15:45Z) - Robust and integrative Bayesian neural networks for likelihood-free
parameter inference [0.0]
要約統計を学習するための最先端のニューラルネットワークベースの手法は、シミュレーションベースの確率自由パラメータ推論に有望な結果をもたらした。
本研究では,ベイズニューラルネットワークを用いて要約統計学を学習し,カテゴリー分布を用いて後部密度を直接推定する頑健な統合手法を提案する。
論文 参考訳(メタデータ) (2021-02-12T13:45:23Z) - Belief Propagation Reloaded: Learning BP-Layers for Labeling Problems [83.98774574197613]
最も単純な推論手法の1つとして、切り詰められた最大積のBelief伝播を取り上げ、それをディープラーニングモデルの適切なコンポーネントにするために必要となるものを加えます。
このBP-Layerは畳み込みニューラルネットワーク(CNN)の最終ブロックまたは中間ブロックとして使用できる
このモデルは様々な密集予測問題に適用可能であり、パラメータ効率が高く、ステレオ、光フロー、セマンティックセグメンテーションにおける堅牢な解を提供する。
論文 参考訳(メタデータ) (2020-03-13T13:11:35Z) - MSE-Optimal Neural Network Initialization via Layer Fusion [68.72356718879428]
ディープニューラルネットワークは、さまざまな分類と推論タスクに対して最先端のパフォーマンスを達成する。
グラデーションと非進化性の組み合わせは、学習を新しい問題の影響を受けやすいものにする。
確率変数を用いて学習した深層ネットワークの近傍層を融合する手法を提案する。
論文 参考訳(メタデータ) (2020-01-28T18:25:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。