論文の概要: Syllabic Quantity Patterns as Rhythmic Features for Latin Authorship
Attribution
- arxiv url: http://arxiv.org/abs/2110.14203v1
- Date: Wed, 27 Oct 2021 06:25:31 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-29 02:12:34.604327
- Title: Syllabic Quantity Patterns as Rhythmic Features for Latin Authorship
Attribution
- Title(参考訳): ラテン文字作者属性のリズム特徴としての音節量パターン
- Authors: Silvia Corbara, Alejandro Moreo, Fabrizio Sebastiani
- Abstract要約: 我々は、ラテン散文の計算的オーサシップ属性のタスクにおいて、リズミカルな特徴を導出する基盤として、音節量を用いる。
2つの異なる機械学習手法を用いて3つの異なるデータセットを用いて実験を行い、音節量に基づくリズム特徴がラテン散文の著者の識別に有用であることを示した。
- 参考スコア(独自算出の注目度): 74.27826764855911
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: It is well known that, within the Latin production of written text, peculiar
metric schemes were followed not only in poetic compositions, but also in many
prose works. Such metric patterns were based on so-called syllabic quantity,
i.e., on the length of the involved syllables, and there is substantial
evidence suggesting that certain authors had a preference for certain metric
patterns over others. In this research we investigate the possibility to employ
syllabic quantity as a base for deriving rhythmic features for the task of
computational authorship attribution of Latin prose texts. We test the impact
of these features on the authorship attribution task when combined with other
topic-agnostic features. Our experiments, carried out on three different
datasets, using two different machine learning methods, show that rhythmic
features based on syllabic quantity are beneficial in discriminating among
Latin prose authors.
- Abstract(参考訳): ラテン語の文章の制作において、独特のメートル法が詩作だけでなく、多くの散文作品にも取り入れられたことはよく知られている。
そのような計量パターンは、いわゆる音節量、すなわち、関係する音節の長さに基づいており、ある著者が他の著者よりも特定の計量パターンを好むことを示す実質的な証拠がある。
本研究では,ラテン文字テキストの計算的オーサシップ帰属作業におけるリズミカル特徴の導出基盤として,音節量を用いる可能性を検討する。
これらの特徴が他のトピックに依存しない特徴と組み合わせて著者帰属タスクに与える影響を検証した。
2つの異なる機械学習手法を用いて3つの異なるデータセットを用いて実験を行い、音節量に基づくリズム特徴がラテン散文の著者の識別に有用であることを示した。
関連論文リスト
- Estimating the Influence of Sequentially Correlated Literary Properties in Textual Classification: A Data-Centric Hypothesis-Testing Approach [4.161155428666988]
スティロメトリーは、ジャンルやテーマといった要素とは異なる半意識的な選択を反映していると考えられる文学的特徴を分析して著者を区別することを目的としている。
主題的内容など一部の文学的特性は、隣接するテキスト単位間の相関関係として表される可能性が高いが、権威的なスタイルのように、その独立性を持つものもいる。
テキスト分類における逐次相関文学的特性の影響を評価するための仮説検証手法を提案する。
論文 参考訳(メタデータ) (2024-11-07T18:28:40Z) - BookWorm: A Dataset for Character Description and Analysis [59.186325346763184]
本稿では,短い事実プロファイルを生成する文字記述と,詳細な解釈を提供する文字解析という2つのタスクを定義する。
本稿では,Gutenbergプロジェクトからの書籍と,人間による記述と分析のペアリングを行うBookWormデータセットを紹介する。
その結果,検索に基づくアプローチは両タスクにおいて階層的アプローチよりも優れていた。
論文 参考訳(メタデータ) (2024-10-14T10:55:58Z) - Take the Hint: Improving Arabic Diacritization with
Partially-Diacritized Text [4.863310073296471]
本稿では,任意のダイアクリティカルティクスを効果的にサポートするマルチソースモデルである2SDiacを提案する。
また、ランダムマスキングのレベルが異なる入力において、与えられたダイアクリティカルを活用できるトレーニングスキームであるガイドドラーニングを導入する。
論文 参考訳(メタデータ) (2023-06-06T10:18:17Z) - DeltaScore: Fine-Grained Story Evaluation with Perturbations [69.33536214124878]
DELTASCOREは,ニュアンスストーリーの側面の評価に摂動技術を用いた新しい手法である。
私たちの中心的な命題は、物語が特定の側面(例えば、流感)で興奮する程度は、特定の摂動に対するその感受性の大きさと相関している、と仮定している。
事前学習言語モデルを用いて,前摂動状態と後摂動状態の確率差を計算することにより,アスペクトの品質を測定する。
論文 参考訳(メタデータ) (2023-03-15T23:45:54Z) - A pattern recognition approach for distinguishing between prose and
poetry [0.8971132850029492]
本稿では,音韻特性とリズム特性のみに基づく詩文と散文を区別する自動手法を提案する。
抽出した特徴集合を用いて検討されたテキストの分類を行った結果,ニューラルネットワークを用いて得られた0.78の精度が得られた。
論文 参考訳(メタデータ) (2021-07-18T18:44:17Z) - Sentiment analysis in tweets: an assessment study from classical to
modern text representation models [59.107260266206445]
Twitterで公開された短いテキストは、豊富な情報源として大きな注目を集めている。
非公式な言語スタイルや騒々しい言語スタイルといったそれらの固有の特徴は、多くの自然言語処理(NLP)タスクに挑戦し続けている。
本研究では,22データセットの豊富なコレクションを用いて,ツイートに表される感情を識別する既存言語モデルの評価を行った。
論文 参考訳(メタデータ) (2021-05-29T21:05:28Z) - Decomposing lexical and compositional syntax and semantics with deep
language models [82.81964713263483]
GPT2のような言語変換器の活性化は、音声理解中の脳活動に線形にマップすることが示されている。
本稿では,言語モデルの高次元アクティベーションを,語彙,構成,構文,意味表現の4つのクラスに分類する分類法を提案する。
その結果は2つの結果が浮かび上がった。
まず、構成表現は、語彙よりも広範な皮質ネットワークを募集し、両側の側頭、頭頂、前頭前皮質を包含する。
論文 参考訳(メタデータ) (2021-03-02T10:24:05Z) - Metrical Tagging in the Wild: Building and Annotating Poetry Corpora
with Rhythmic Features [0.0]
英語とドイツ語に大規模な詩コーパスを提供し,コーパス駆動ニューラルモデルを訓練するためのコーパスを小型化した韻律的特徴をアノテートする。
音節埋め込みを用いた BiLSTM-CRF モデルは, CRF ベースラインと異なるBERT ベースアプローチよりも優れていることを示す。
論文 参考訳(メタデータ) (2021-02-17T16:38:57Z) - Quasi Error-free Text Classification and Authorship Recognition in a
large Corpus of English Literature based on a Novel Feature Set [0.0]
GLECの準誤りのないテキスト分類とオーサシップ認識は,同一の5つのスタイルと5つのコンテンツ特徴を用いた手法で可能であることを示す。
我々のデータは、心理学を読むための文学や実験の、多くの未来の計算および実証的研究の道を開く。
論文 参考訳(メタデータ) (2020-10-21T07:39:55Z) - The Secret is in the Spectra: Predicting Cross-lingual Task Performance
with Spectral Similarity Measures [83.53361353172261]
本稿では,モノリンガル埋め込み空間の類似性とタスク性能の相関性に着目した大規模研究を行う。
2つの埋め込み空間間のいくつかの同型測度を導入し、それぞれのスペクトルの関連統計に基づく。
このようなスペクトル同型尺度から得られた言語類似度スコアは、異なる言語間タスクで観測された性能と強く関連していることを実証的に示す。
論文 参考訳(メタデータ) (2020-01-30T00:09:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。