From Peptides to Nanostructures: A Euclidean Transformer for Fast and
Stable Machine Learned Force Fields
- URL: http://arxiv.org/abs/2309.15126v2
- Date: Fri, 16 Feb 2024 15:54:15 GMT
- Title: From Peptides to Nanostructures: A Euclidean Transformer for Fast and
Stable Machine Learned Force Fields
- Authors: J. Thorben Frank, Oliver T. Unke, Klaus-Robert M\"uller, Stefan
Chmiela
- Abstract summary: We propose a transformer architecture called SO3krates that combines sparse equivariant representations with a self-attention mechanism.
SO3krates achieves a unique combination of accuracy, stability, and speed that enables insightful analysis of quantum properties of matter on extended time and system size scales.
- Score: 5.013279299982324
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent years have seen vast progress in the development of machine learned
force fields (MLFFs) based on ab-initio reference calculations. Despite
achieving low test errors, the reliability of MLFFs in molecular dynamics (MD)
simulations is facing growing scrutiny due to concerns about instability over
extended simulation timescales. Our findings suggest a potential connection
between robustness to cumulative inaccuracies and the use of equivariant
representations in MLFFs, but the computational cost associated with these
representations can limit this advantage in practice. To address this, we
propose a transformer architecture called SO3krates that combines sparse
equivariant representations (Euclidean variables) with a self-attention
mechanism that separates invariant and equivariant information, eliminating the
need for expensive tensor products. SO3krates achieves a unique combination of
accuracy, stability, and speed that enables insightful analysis of quantum
properties of matter on extended time and system size scales. To showcase this
capability, we generate stable MD trajectories for flexible peptides and
supra-molecular structures with hundreds of atoms. Furthermore, we investigate
the PES topology for medium-sized chainlike molecules (e.g., small peptides) by
exploring thousands of minima. Remarkably, SO3krates demonstrates the ability
to strike a balance between the conflicting demands of stability and the
emergence of new minimum-energy conformations beyond the training data, which
is crucial for realistic exploration tasks in the field of biochemistry.
Related papers
- Tight Stability, Convergence, and Robustness Bounds for Predictive Coding Networks [60.3634789164648]
Energy-based learning algorithms, such as predictive coding (PC), have garnered significant attention in the machine learning community.
We rigorously analyze the stability, robustness, and convergence of PC through the lens of dynamical systems theory.
arXiv Detail & Related papers (2024-10-07T02:57:26Z) - Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
We use FNOs to model the evolution of random quantum spin systems.
We apply FNOs to a compact set of Hamiltonian observables instead of the entire $2n$ quantum wavefunction.
arXiv Detail & Related papers (2024-09-05T07:18:09Z) - Enhanced sampling of robust molecular datasets with uncertainty-based
collective variables [0.0]
We propose a method that leverages uncertainty as the collective variable (CV) to guide the acquisition of chemically-relevant data points.
This approach employs a Gaussian Mixture Model-based uncertainty metric from a single model as the CV for biased molecular dynamics simulations.
arXiv Detail & Related papers (2024-02-06T06:42:51Z) - SE(3)-Invariant Multiparameter Persistent Homology for Chiral-Sensitive
Molecular Property Prediction [1.534667887016089]
We present a novel method for generating molecular fingerprints using multi parameter persistent homology (MPPH)
This technique holds considerable significance for drug discovery and materials science, where precise molecular property prediction is vital.
We demonstrate its superior performance over existing state-of-the-art methods in predicting molecular properties through extensive evaluations on the MoleculeNet benchmark.
arXiv Detail & Related papers (2023-12-12T09:33:54Z) - Implicit Transfer Operator Learning: Multiple Time-Resolution Surrogates
for Molecular Dynamics [8.35780131268962]
We present Implict Transfer Operator (ITO) Learning, a framework to learn surrogates of the simulation process with multiple time-resolutions.
We also present a coarse-grained CG-SE3-ITO model which can quantitatively model all-atom molecular dynamics.
arXiv Detail & Related papers (2023-05-29T12:19:41Z) - Neural-network quantum states for ultra-cold Fermi gases [49.725105678823915]
This work introduces a novel Pfaffian-Jastrow neural-network quantum state that includes backflow transformation based on message-passing architecture.
We observe the emergence of strong pairing correlations through the opposite-spin pair distribution functions.
Our findings suggest that neural-network quantum states provide a promising strategy for studying ultra-cold Fermi gases.
arXiv Detail & Related papers (2023-05-15T17:46:09Z) - Evaluating the Transferability of Machine-Learned Force Fields for
Material Property Modeling [2.494740426749958]
We present a more comprehensive set of benchmarking tests for evaluating the transferability of machine-learned force fields.
We use a graph neural network (GNN)-based force field coupled with the OpenMM package to carry out MD simulations for Argon.
Our results show that the model can accurately capture the behavior of the solid phase only when the configurations from the solid phase are included in the training dataset.
arXiv Detail & Related papers (2023-01-10T00:25:48Z) - Accurate Machine Learned Quantum-Mechanical Force Fields for
Biomolecular Simulations [51.68332623405432]
Molecular dynamics (MD) simulations allow atomistic insights into chemical and biological processes.
Recently, machine learned force fields (MLFFs) emerged as an alternative means to execute MD simulations.
This work proposes a general approach to constructing accurate MLFFs for large-scale molecular simulations.
arXiv Detail & Related papers (2022-05-17T13:08:28Z) - Noise-resilient Edge Modes on a Chain of Superconducting Qubits [103.93329374521808]
Inherent symmetry of a quantum system may protect its otherwise fragile states.
We implement the one-dimensional kicked Ising model which exhibits non-local Majorana edge modes (MEMs) with $mathbbZ$ parity symmetry.
MEMs are found to be resilient against certain symmetry-breaking noise owing to a prethermalization mechanism.
arXiv Detail & Related papers (2022-04-24T22:34:15Z) - Entanglement and correlations in fast collective neutrino flavor
oscillations [68.8204255655161]
Collective neutrino oscillations play a crucial role in transporting lepton flavor in astrophysical settings.
We study the full out-of-equilibrium flavor dynamics in simple multi-angle geometries displaying fast oscillations.
We present evidence that these fast collective modes are generated by the same dynamical phase transition.
arXiv Detail & Related papers (2022-03-05T17:00:06Z) - A2I Transformer: Permutation-equivariant attention network for pairwise
and many-body interactions with minimal featurization [0.1469945565246172]
In this work, we suggest an end-to-end model which directly predicts per-atom energy from the coordinates of particles.
We tested our model against several challenges in molecular simulation problems, including periodic boundary condition (PBC), $n$-body interaction, and binary composition.
arXiv Detail & Related papers (2021-10-27T12:18:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.