SIM-ECG: A Signal Importance Mask-driven ECGClassification System
- URL: http://arxiv.org/abs/2110.14835v1
- Date: Thu, 28 Oct 2021 01:27:37 GMT
- Title: SIM-ECG: A Signal Importance Mask-driven ECGClassification System
- Authors: Dharma KC, Chicheng Zhang, Chris Gniady, Parth Sandeep Agarwal, Sushil
Sharma
- Abstract summary: Heart disease is the number one killer, and ECGs can assist in the early diagnosis and prevention of deadly outcomes.
Current systems are not as accurate as skilled ECG readers, and black-box approaches to providing diagnosis result in a lack of trust by medical personnel.
We propose a signal importance mask feedback-based machine learning system that continuously accepts feedback, improves accuracy, and ex-plains the resulting diagnosis.
- Score: 11.030532126096006
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Heart disease is the number one killer, and ECGs can assist in the early
diagnosis and prevention of deadly outcomes. Accurate ECG interpretation is
critical in detecting heart diseases; however, they are often misinterpreted
due to a lack of training or insufficient time spent to detect minute
anomalies. Subsequently, researchers turned to machine learning to assist in
the analysis. However, existing systems are not as accurate as skilled ECG
readers, and black-box approaches to providing diagnosis result in a lack of
trust by medical personnel in a given diagnosis. To address these issues, we
propose a signal importance mask feedback-based machine learning system that
continuously accepts feedback, improves accuracy, and ex-plains the resulting
diagnosis. This allows medical personnel to quickly glance at the output and
either accept the results, validate the explanation and diagnosis, or quickly
correct areas of misinterpretation, giving feedback to the system for
improvement. We have tested our system on a publicly available dataset
consisting of healthy and disease-indicating samples. We empirically show that
our algorithm is better in terms of standard performance measures such as
F-score and MacroAUC compared to normal training baseline (without feedback);
we also show that our model generates better interpretability maps.
Related papers
- Self-Explaining Hypergraph Neural Networks for Diagnosis Prediction [45.89562183034469]
Existing deep learning diagnosis prediction models with intrinsic interpretability often assign attention weights to every past diagnosis or hospital visit.
We introduce SHy, a self-explaining hypergraph neural network model, designed to offer personalized, concise and faithful explanations.
SHy captures higher-order disease interactions and extracts distinct temporal phenotypes as personalized explanations.
arXiv Detail & Related papers (2025-02-15T06:33:02Z) - FADE: Forecasting for Anomaly Detection on ECG [4.914228925573227]
The objective of this work is to propose a deep learning system, FADE, designed for normal ECG forecasting and anomaly detection.
FADE has been trained in a self-supervised manner with a novel morphological inspired loss function.
Using a novel distance function to compare forecasted ECG signals with actual sensor data, our method effectively identifies cardiac anomalies.
arXiv Detail & Related papers (2025-02-11T09:19:39Z) - MedRAG: Enhancing Retrieval-augmented Generation with Knowledge Graph-Elicited Reasoning for Healthcare Copilot [47.77948063906033]
Retrieval-augmented generation (RAG) is a well-suited technique for retrieving privacy-sensitive Electronic Health Records.
This paper proposes MedRAG, a RAG model enhanced by knowledge graph (KG)-elicited reasoning for the medical domain.
Tests show MedRAG provides more specific diagnostic insights and outperforms state-of-the-art models in reducing misdiagnosis rates.
arXiv Detail & Related papers (2025-02-06T12:27:35Z) - Self-supervised inter-intra period-aware ECG representation learning for detecting atrial fibrillation [41.82319894067087]
We propose an inter-intra period-aware ECG representation learning approach.
Considering ECGs of atrial fibrillation patients exhibit the irregularity in RR intervals and the absence of P-waves, we develop specific pre-training tasks for interperiod and intraperiod representations.
Our approach demonstrates remarkable AUC performances on the BTCH dataset, textiti.e., 0.953/0.996 for paroxysmal/persistent atrial fibrillation detection.
arXiv Detail & Related papers (2024-10-08T10:03:52Z) - ECG Arrhythmia Detection Using Disease-specific Attention-based Deep Learning Model [0.0]
We propose a disease-specific attention-based deep learning model (DANet) for arrhythmia detection from short ECG recordings.
The novel idea is to introduce a soft-coding or hard-coding waveform enhanced module into existing deep neural networks.
For the soft-coding DANet, we also develop a learning framework combining self-supervised pre-training with two-stage supervised training.
arXiv Detail & Related papers (2024-07-25T13:27:10Z) - Learning to diagnose cirrhosis from radiological and histological labels
with joint self and weakly-supervised pretraining strategies [62.840338941861134]
We propose to leverage transfer learning from large datasets annotated by radiologists, to predict the histological score available on a small annex dataset.
We compare different pretraining methods, namely weakly-supervised and self-supervised ones, to improve the prediction of the cirrhosis.
This method outperforms the baseline classification of the METAVIR score, reaching an AUC of 0.84 and a balanced accuracy of 0.75.
arXiv Detail & Related papers (2023-02-16T17:06:23Z) - A lightweight hybrid CNN-LSTM model for ECG-based arrhythmia detection [0.0]
This paper introduces a light deep learning approach for high accuracy detection of 8 different cardiac arrhythmias and normal rhythm.
A trained model for arrhythmia classification using diverse ECG signals were successfully developed and tested.
arXiv Detail & Related papers (2022-08-29T05:01:04Z) - Identifying Electrocardiogram Abnormalities Using a
Handcrafted-Rule-Enhanced Neural Network [18.859487271034336]
We introduce some rules into convolutional neural networks, which help present clinical knowledge to deep learning based ECG analysis.
Our new approach considerably outperforms existing state-of-the-art methods.
arXiv Detail & Related papers (2022-06-16T04:42:57Z) - ECG-Based Heart Arrhythmia Diagnosis Through Attentional Convolutional
Neural Networks [9.410102957429705]
We propose Attention-Based Convolutional Neural Networks (ABCNN) to work on the raw ECG signals and automatically extract the informative dependencies for accurate arrhythmia detection.
Our main task is to find the arrhythmia from normal heartbeats and, at the meantime, accurately recognize the heart diseases from five arrhythmia types.
The experimental results show that the proposed ABCNN outperforms the widely used baselines.
arXiv Detail & Related papers (2021-08-18T14:55:46Z) - An Interpretable Multiple-Instance Approach for the Detection of
referable Diabetic Retinopathy from Fundus Images [72.94446225783697]
We propose a machine learning system for the detection of referable Diabetic Retinopathy in fundus images.
By extracting local information from image patches and combining it efficiently through an attention mechanism, our system is able to achieve high classification accuracy.
We evaluate our approach on publicly available retinal image datasets, in which it exhibits near state-of-the-art performance.
arXiv Detail & Related papers (2021-03-02T13:14:15Z) - Identification of Ischemic Heart Disease by using machine learning
technique based on parameters measuring Heart Rate Variability [50.591267188664666]
In this study, 18 non-invasive features (age, gender, left ventricular ejection fraction and 15 obtained from HRV) of 243 subjects were used to train and validate a series of several ANN.
The best result was obtained using 7 input parameters and 7 hidden nodes with an accuracy of 98.9% and 82% for the training and validation dataset.
arXiv Detail & Related papers (2020-10-29T19:14:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.