論文の概要: Generalized Anomaly Detection
- arxiv url: http://arxiv.org/abs/2110.15108v1
- Date: Thu, 28 Oct 2021 13:42:26 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-30 00:37:09.784086
- Title: Generalized Anomaly Detection
- Title(参考訳): 一般化異常検出
- Authors: Suresh Singh, Minwei Luo, and Yu Li
- Abstract要約: 本研究は,通常クラスが複数の対象カテゴリからなる場合の異常検出について検討する。
この問題を解決するために複数の一級異常検知器を共同で使用すると、全ての通常の対象物に対して単一の一級異常検出器を訓練するよりも、結果が劣ることがわかった。
- 参考スコア(独自算出の注目度): 7.660300523834661
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study anomaly detection for the case when the normal class consists of
more than one object category. This is an obvious generalization of the
standard one-class anomaly detection problem. However, we show that jointly
using multiple one-class anomaly detectors to solve this problem yields poorer
results as compared to training a single one-class anomaly detector on all
normal object categories together. We further develop a new anomaly detector
called DeepMAD that learns compact distinguishing features by exploiting the
multiple normal objects categories. This algorithm achieves higher AUC values
for different datasets compared to two top performing one-class algorithms that
either are trained on each normal object category or jointly trained on all
normal object categories combined. In addition to theoretical results we
present empirical results using the CIFAR-10, fMNIST, CIFAR-100, and a new
dataset we developed called RECYCLE.
- Abstract(参考訳): 本研究は,通常クラスが複数の対象カテゴリからなる場合の異常検出について検討する。
これは標準の1クラス異常検出問題の明らかな一般化である。
しかし, この問題を解決するために複数の一級異常検出器を共同で使用すると, 通常の対象物に対して1つの一級異常検出器を同時に訓練するよりも, 結果が劣ることがわかった。
さらに,複数の正規オブジェクトカテゴリを活用し,コンパクトな識別特徴を学習する,deepmadと呼ばれる新しい異常検出器の開発を行った。
このアルゴリズムは、各通常のオブジェクトカテゴリでトレーニングされたり、通常のオブジェクトカテゴリで共同訓練された2つの上位1クラスアルゴリズムと比較して、データセットのAUC値が高い。
理論的結果に加えて,CIFAR-10,fMNIST,CIFAR-100,RECYCLEという新たなデータセットを用いて実験結果を示す。
関連論文リスト
- ARC: A Generalist Graph Anomaly Detector with In-Context Learning [62.202323209244]
ARCは汎用的なGADアプローチであり、一対一のGADモデルで様々なグラフデータセットの異常を検出することができる。
ARCはコンテキスト内学習を備えており、ターゲットデータセットからデータセット固有のパターンを直接抽出することができる。
各種領域からの複数のベンチマークデータセットに対する大規模な実験は、ARCの優れた異常検出性能、効率、一般化性を示す。
論文 参考訳(メタデータ) (2024-05-27T02:42:33Z) - Absolute-Unified Multi-Class Anomaly Detection via Class-Agnostic Distribution Alignment [27.375917265177847]
教師なし異常検出(UAD)メソッドは、各オブジェクトカテゴリごとに別々のモデルを構築する。
近年の研究では、複数のクラス、すなわちモデル統一 UAD に対する統一モデルのトレーニングが提案されている。
我々は,クラス情報,すなわちtextitabsolute-unified UADを使わずに,マルチクラス異常検出に対処する,シンプルかつ強力な手法を提案する。
論文 参考訳(メタデータ) (2024-03-31T15:50:52Z) - Toward Generalist Anomaly Detection via In-context Residual Learning with Few-shot Sample Prompts [25.629973843455495]
Generalist Anomaly Detection (GAD)は、ターゲットデータにさらなるトレーニングを加えることなく、さまざまなアプリケーションドメインからさまざまなデータセットの異常を検出するために一般化可能な、単一の検出モデルをトレーニングすることを目的としている。
InCTRLと呼ばれるGADのための文脈内残差学習モデルを学習する新しい手法を提案する。
InCTRLは最高のパフォーマーであり、最先端の競合手法を著しく上回っている。
論文 参考訳(メタデータ) (2024-03-11T08:07:46Z) - Open-Vocabulary Video Anomaly Detection [57.552523669351636]
監視の弱いビデオ異常検出(VAD)は、ビデオフレームが正常であるか異常であるかを識別するためにビデオレベルラベルを利用する際、顕著な性能を達成した。
近年の研究は、より現実的な、オープンセットのVADに取り組み、異常や正常なビデオから見えない異常を検出することを目的としている。
本稿ではさらに一歩前進し、未確認および未確認の異常を検知・分類するために訓練済みの大規模モデルを活用することを目的とした、オープン語彙ビデオ異常検出(OVVAD)について検討する。
論文 参考訳(メタデータ) (2023-11-13T02:54:17Z) - Anomaly Detection via Multi-Scale Contrasted Memory [3.0170109896527086]
マルチスケールの標準プロトタイプをトレーニング中に記憶し,異常偏差値を計算する2段階の異常検出器を新たに導入する。
CIFAR-10の誤差相対改善率を最大35%とすることにより,多種多様なオブジェクト,スタイル,局所異常に対する最先端性能を高い精度で向上させる。
論文 参考訳(メタデータ) (2022-11-16T16:58:04Z) - Explainable Deep Few-shot Anomaly Detection with Deviation Networks [123.46611927225963]
本稿では,弱い教師付き異常検出フレームワークを導入し,検出モデルを訓練する。
提案手法は,ラベル付き異常と事前確率を活用することにより,識別正規性を学習する。
我々のモデルはサンプル効率が高く頑健であり、クローズドセットとオープンセットの両方の設定において最先端の競合手法よりもはるかに優れている。
論文 参考訳(メタデータ) (2021-08-01T14:33:17Z) - Self-Trained One-class Classification for Unsupervised Anomaly Detection [56.35424872736276]
異常検出(AD)は、製造から医療まで、さまざまな分野に応用されている。
本研究は、トレーニングデータ全体がラベル付けされておらず、正規サンプルと異常サンプルの両方を含む可能性のある、教師なしAD問題に焦点を当てる。
この問題に対処するため,データリファインメントによる堅牢な一級分類フレームワークを構築した。
本手法は6.3AUCと12.5AUCの平均精度で最先端の1クラス分類法より優れていることを示す。
論文 参考訳(メタデータ) (2021-06-11T01:36:08Z) - Unsupervised Learning of Multi-level Structures for Anomaly Detection [16.037822355038443]
本稿では,グローバル構造を分解して異常データを生成する新しい手法を提案する。
様々なレベルの局所的な異常構造を効果的に露呈することができる。
全てのレベル固有検出器の出力を集約することにより、すべての潜在的な異常を検知できるモデルを得る。
論文 参考訳(メタデータ) (2021-04-25T08:38:41Z) - Supervised Anomaly Detection via Conditional Generative Adversarial
Network and Ensemble Active Learning [24.112455929818484]
異常検出はマシンインテリジェンスに広く応用されているが、未解決の問題である。
従来の教師なし異常検出器は最適以下であり、教師付きモデルはバイアス予測を容易に行うことができる。
Ensemble Active Learning Generative Adversarial Network (EAL-GAN) の導入により,新たな教師付き異常検知器を提案する。
論文 参考訳(メタデータ) (2021-04-24T13:47:50Z) - Learning by Minimizing the Sum of Ranked Range [58.24935359348289]
本稿では,学習目標を定式化するための一般的なアプローチとして,ランキング範囲(SoRR)の和を紹介した。
ランク付き範囲は、実数の集合のソートされた値の連続的なシーケンスである。
我々は,SoRRフレームワークの最小化のための機械学習における2つの応用,すなわち,バイナリ分類のためのAoRR集約損失とマルチラベル/マルチクラス分類のためのTKML個人損失について検討する。
論文 参考訳(メタデータ) (2020-10-05T01:58:32Z) - Deep Weakly-supervised Anomaly Detection [118.55172352231381]
ペアワイズ関係予測ネットワーク(PReNet)は、ペアワイズ関係の特徴と異常スコアを学習する。
PReNetは、学習したペアの異常パターンに適合する見知らぬ異常を検出できる。
12の実世界のデータセットに対する実証的な結果から、PReNetは目に見えない異常や異常を検知する9つの競合する手法を著しく上回っている。
論文 参考訳(メタデータ) (2019-10-30T00:40:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。