論文の概要: Learning to Control using Image Feedback
- arxiv url: http://arxiv.org/abs/2110.15290v1
- Date: Thu, 28 Oct 2021 16:52:18 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-29 17:38:00.703433
- Title: Learning to Control using Image Feedback
- Title(参考訳): 画像フィードバックを用いた制御の学習
- Authors: Krishnan Raghavan, Vignesh Narayanan, Jagannathan Saraangapani
- Abstract要約: 画像の形でフィードバックを生成するシステムに対する制御ポリシーを設計するための2つのニューラルネットワーク(NN)ベースのフィードバック制御フレームワークを提案する。
特に,DQN(Deep $Q$-network)に基づく学習制御戦略を開発し,スナップショット画像から一連の制御入力を合成する。
- 参考スコア(独自算出の注目度): 5.607676459156789
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Learning to control complex systems using non-traditional feedback, e.g., in
the form of snapshot images, is an important task encountered in diverse
domains such as robotics, neuroscience, and biology (cellular systems). In this
paper, we present a two neural-network (NN)-based feedback control framework to
design control policies for systems that generate feedback in the form of
images. In particular, we develop a deep $Q$-network (DQN)-driven learning
control strategy to synthesize a sequence of control inputs from snapshot
images that encode the information pertaining to the current state and control
action of the system. Further, to train the networks we employ a direct
error-driven learning (EDL) approach that utilizes a set of linear
transformations of the NN training error to update the NN weights in each
layer. We verify the efficacy of the proposed control strategy using numerical
examples.
- Abstract(参考訳): スナップショットイメージのような非伝統的なフィードバックを使って複雑なシステムを制御するための学習は、ロボティクス、神経科学、生物学(細胞システム)といった様々な領域で遭遇する重要なタスクである。
本稿では、画像の形でフィードバックを生成するシステムの制御ポリシーを設計するための2つのニューラルネットワーク(NN)ベースのフィードバック制御フレームワークを提案する。
特に,現在の状態に関連する情報をエンコードし,システムの制御動作を制御するスナップショット画像から,一連の制御入力を合成する,深い$q$-network (dqn) 駆動学習制御戦略を開発した。
さらに、ネットワークのトレーニングには、NNトレーニングエラーの一連の線形変換を利用して各レイヤのNN重みを更新するダイレクトエラー駆動学習(EDL)アプローチを採用する。
数値例を用いて,提案手法の有効性を検証する。
関連論文リスト
- Manipulating Feature Visualizations with Gradient Slingshots [54.31109240020007]
本稿では,モデルの決定過程に大きな影響を及ぼすことなく,特徴可視化(FV)を操作する新しい手法を提案する。
ニューラルネットワークモデルにおける本手法の有効性を評価し,任意の選択したニューロンの機能を隠蔽する能力を示す。
論文 参考訳(メタデータ) (2024-01-11T18:57:17Z) - On the effectiveness of neural priors in modeling dynamical systems [28.69155113611877]
ニューラルネットワークがそのようなシステムを学ぶ際に提供するアーキテクチャの規則化について論じる。
動的システムをモデル化する際の複数の問題を解決するために,レイヤ数が少ない単純な座標ネットワークが利用できることを示す。
論文 参考訳(メタデータ) (2023-03-10T06:21:24Z) - A Neurosymbolic Approach to the Verification of Temporal Logic
Properties of Learning enabled Control Systems [0.0]
本稿では,一般的なSTL仕様に対するニューラルネットワーク(NN)コントローラの検証モデルを提案する。
また、一般的なアクティベーション機能を持つニューラルネットワークコントローラに対する新しいアプローチを提案する。
論文 参考訳(メタデータ) (2023-03-07T04:08:33Z) - ConCerNet: A Contrastive Learning Based Framework for Automated
Conservation Law Discovery and Trustworthy Dynamical System Prediction [82.81767856234956]
本稿では,DNNに基づく動的モデリングの信頼性を向上させるために,ConCerNetという新しい学習フレームワークを提案する。
本手法は, 座標誤差と保存量の両方において, ベースラインニューラルネットワークよりも一貫して優れていることを示す。
論文 参考訳(メタデータ) (2023-02-11T21:07:30Z) - The least-control principle for learning at equilibrium [65.2998274413952]
我々は、平衡反復ニューラルネットワーク、深層平衡モデル、メタラーニングを学ぶための新しい原理を提案する。
私たちの結果は、脳がどのように学習するかを明らかにし、幅広い機械学習問題にアプローチする新しい方法を提供します。
論文 参考訳(メタデータ) (2022-07-04T11:27:08Z) - Minimizing Control for Credit Assignment with Strong Feedback [65.59995261310529]
ディープニューラルネットワークにおける勾配に基づくクレジット割り当ての現在の手法は、無限小のフィードバック信号を必要とする。
我々は、神経活動に対する強いフィードバックと勾配に基づく学習を組み合わせることで、ニューラルネットワークの最適化に関する新たな視点を自然に導き出すことを示す。
DFCにおける強いフィードバックを用いることで、空間と時間において完全に局所的な学習規則を用いることで、前向きとフィードバックの接続を同時に学習できることを示す。
論文 参考訳(メタデータ) (2022-04-14T22:06:21Z) - Physics-informed Neural Networks-based Model Predictive Control for
Multi-link Manipulators [0.0]
物理インフォームド機械学習手法を用いて,多体ダイナミクスに対する非線形モデル予測制御(NMPC)について論じる。
本稿では,ネットワーク入力として制御動作と初期条件を付加することでPINNの強化を提案する。
PINNベースのMPCを用いて,複雑な機械システムにおける追跡問題の解法を提案する。
論文 参考訳(メタデータ) (2021-09-22T15:31:24Z) - Scalable Perception-Action-Communication Loops with Convolutional and
Graph Neural Networks [208.15591625749272]
視覚に基づくグラフアグリゲーション・アンド・推論(VGAI)を用いた知覚-行動-コミュニケーションループの設計を提案する。
我々のフレームワークは、畳み込みとグラフニューラルネットワーク(CNN/GNN)のカスケードによって実装され、エージェントレベルの視覚知覚と特徴学習に対処する。
我々は、VGAIが他の分散コントローラに匹敵する性能を得ることを示した。
論文 参考訳(メタデータ) (2021-06-24T23:57:21Z) - Model-Based Safe Policy Search from Signal Temporal Logic Specifications
Using Recurrent Neural Networks [1.005130974691351]
本稿では,STL (Signal Temporal Logic) の仕様からコントローラを学習するためのポリシー探索手法を提案する。
システムモデルは未知であり、制御ポリシとともに学習される。
その結果,本手法は非常に少ないシステム実行で所定の仕様を満たせることが明らかとなり,オンライン制御に活用できる可能性が示唆された。
論文 参考訳(メタデータ) (2021-03-29T20:21:55Z) - Physical deep learning based on optimal control of dynamical systems [0.0]
本研究では,連続時間力学系の最適制御に基づくパターン認識を行う。
鍵となる例として、光電子遅延システムにダイナミックスに基づく認識アプローチを適用する。
これは、多くの重みパラメータをトレーニングする必要がある従来の多層ニューラルネットワークとは対照的である。
論文 参考訳(メタデータ) (2020-12-16T06:38:01Z) - Towards a Neural Graphics Pipeline for Controllable Image Generation [96.11791992084551]
ニューラルグラフパイプライン(NGP)は,ニューラルネットワークと従来の画像形成モデルを組み合わせたハイブリッド生成モデルである。
NGPは、画像を解釈可能な外観特徴マップの集合に分解し、制御可能な画像生成のための直接制御ハンドルを明らかにする。
単目的シーンの制御可能な画像生成におけるアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2020-06-18T14:22:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。