論文の概要: Physical deep learning based on optimal control of dynamical systems
- arxiv url: http://arxiv.org/abs/2012.08761v2
- Date: Thu, 1 Apr 2021 06:43:47 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-20 11:20:14.226793
- Title: Physical deep learning based on optimal control of dynamical systems
- Title(参考訳): 力学系の最適制御に基づく物理深層学習
- Authors: Genki Furuhata, Tomoaki Niiyama, and Satoshi Sunada
- Abstract要約: 本研究では,連続時間力学系の最適制御に基づくパターン認識を行う。
鍵となる例として、光電子遅延システムにダイナミックスに基づく認識アプローチを適用する。
これは、多くの重みパラメータをトレーニングする必要がある従来の多層ニューラルネットワークとは対照的である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning is the backbone of artificial intelligence technologies, and it
can be regarded as a kind of multilayer feedforward neural network. An essence
of deep learning is information propagation through layers. This suggests that
there is a connection between deep neural networks and dynamical systems in the
sense that information propagation is explicitly modeled by the time-evolution
of dynamical systems. In this study, we perform pattern recognition based on
the optimal control of continuous-time dynamical systems, which is suitable for
physical hardware implementation. The learning is based on the adjoint method
to optimally control dynamical systems, and the deep (virtual) network
structures based on the time evolution of the systems are used for processing
input information. As a key example, we apply the dynamics-based recognition
approach to an optoelectronic delay system and demonstrate that the use of the
delay system allows for image recognition and nonlinear classifications using
only a few control signals. This is in contrast to conventional multilayer
neural networks, which require a large number of weight parameters to be
trained. The proposed approach provides insight into the mechanisms of deep
network processing in the framework of an optimal control problem and presents
a pathway for realizing physical computing hardware.
- Abstract(参考訳): ディープラーニングは人工知能技術のバックボーンであり、多層的なフィードフォワードニューラルネットワークの一種と見なすことができる。
深層学習の本質は層を通しての情報伝達である。
これは、情報伝達が動的システムの時間進化によって明示的にモデル化されるという意味で、ディープニューラルネットワークと動的システムの間に関係があることを示唆している。
本研究では,物理ハードウェアの実装に適した連続時間力学系の最適制御に基づくパターン認識を行う。
学習は動的システムの最適制御のための随伴法に基づいており、入力情報を処理するのにシステムの時間発展に基づく深層(仮想)ネットワーク構造を用いる。
重要な例として,光電子遅延系にダイナミクスに基づく認識手法を適用し,遅延システムを用いることで,少数の制御信号のみを用いた画像認識と非線形分類が可能となることを示す。
これは、多くの重みパラメータをトレーニングする必要がある従来の多層ニューラルネットワークとは対照的である。
提案手法は、最適制御問題の枠組みにおけるディープネットワーク処理のメカニズムを考察し、物理コンピューティングハードウェアを実現するための経路を示す。
関連論文リスト
- Learning System Dynamics without Forgetting [60.08612207170659]
未知の力学を持つ系の軌道予測は、物理学や生物学を含む様々な研究分野において重要である。
本稿では,モードスイッチンググラフODE (MS-GODE) の新たなフレームワークを提案する。
生体力学の異なる多様な系を特徴とする生体力学システムの新しいベンチマークを構築した。
論文 参考訳(メタデータ) (2024-06-30T14:55:18Z) - Efficient PAC Learnability of Dynamical Systems Over Multilayer Networks [30.424671907681688]
より現実的で困難な多層ネットワーク上での動的システムの学習可能性について検討する。
本研究では,学習者が未知のシステムを推論するために,少数の学習例のみを必要とすることを示すための証明可能な保証付き効率的なPAC学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-05-11T02:35:08Z) - Systematic construction of continuous-time neural networks for linear dynamical systems [0.0]
本稿では,動的システムのサブクラスをモデル化するためのニューラルネットワーク構築の体系的アプローチについて論じる。
我々は、各ニューロンの出力が1次または2次常微分方程式(ODE)の解として連続的に進化する連続時間ニューラルネットワークの変種を用いる。
データからネットワークアーキテクチャとパラメータを導出する代わりに、所定のLTIシステムから直接スパースアーキテクチャとネットワークパラメータを計算するための勾配のないアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-03-24T16:16:41Z) - Mechanistic Neural Networks for Scientific Machine Learning [58.99592521721158]
我々は、科学における機械学習応用のためのニューラルネットワーク設計であるメカニスティックニューラルネットワークを提案する。
新しいメカニスティックブロックを標準アーキテクチャに組み込んで、微分方程式を表現として明示的に学習する。
我々のアプローチの中心は、線形プログラムを解くために線形ODEを解く技術に着想を得た、新しい線形計画解法(NeuRLP)である。
論文 参考訳(メタデータ) (2024-02-20T15:23:24Z) - Backpropagation-free Training of Deep Physical Neural Networks [0.0]
我々は「モデルフリーフォワードトレーニング」と呼ばれる生物学的に妥当な学習アルゴリズムによって強化された単純なディープニューラルネットワークアーキテクチャを提案する。
本手法は,トレーニング速度の向上,デジタル計算の削減,物理システムにおける消費電力の削減などにより,最先端のハードウェア・アウェアトレーニング手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-04-20T14:02:49Z) - On the effectiveness of neural priors in modeling dynamical systems [28.69155113611877]
ニューラルネットワークがそのようなシステムを学ぶ際に提供するアーキテクチャの規則化について論じる。
動的システムをモデル化する際の複数の問題を解決するために,レイヤ数が少ない単純な座標ネットワークが利用できることを示す。
論文 参考訳(メタデータ) (2023-03-10T06:21:24Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
データ駆動モデリングは、真のシステムの観測からシステムの力学の近似を学ぼうとする代替パラダイムである。
本稿では,ニューラルネットワークを用いた動的システムのモデル構築方法について検討する。
基礎的な概要に加えて、関連する文献を概説し、このモデリングパラダイムが克服すべき数値シミュレーションから最も重要な課題を概説する。
論文 参考訳(メタデータ) (2021-11-02T10:51:42Z) - Neural Networks with Physics-Informed Architectures and Constraints for
Dynamical Systems Modeling [19.399031618628864]
軌道データから動的モデルを学ぶためのフレームワークを開発する。
出力の値とモデルの内部状態に制約を課す。
様々な力学系に対する提案手法の利点を実験的に実証した。
論文 参考訳(メタデータ) (2021-09-14T02:47:51Z) - Supervised DKRC with Images for Offline System Identification [77.34726150561087]
現代の力学系はますます非線形で複雑なものになりつつある。
予測と制御のためのコンパクトで包括的な表現でこれらのシステムをモデル化するフレームワークが必要である。
本手法は,教師付き学習手法を用いてこれらの基礎関数を学習する。
論文 参考訳(メタデータ) (2021-09-06T04:39:06Z) - Credit Assignment in Neural Networks through Deep Feedback Control [59.14935871979047]
ディープフィードバックコントロール(Deep Feedback Control, DFC)は、フィードバックコントローラを使用して、望ましい出力ターゲットにマッチするディープニューラルネットワークを駆動し、クレジット割り当てに制御信号を使用する新しい学習方法である。
学習規則は空間と時間において完全に局所的であり、幅広い接続パターンに対するガウス・ニュートンの最適化を近似する。
さらに,DFCと皮質錐体ニューロンのマルチコンパートメントモデルと,局所的な電圧依存性のシナプス可塑性規則を関連づける。
論文 参考訳(メタデータ) (2021-06-15T05:30:17Z) - Learning Contact Dynamics using Physically Structured Neural Networks [81.73947303886753]
ディープニューラルネットワークと微分方程式の接続を用いて、オブジェクト間の接触ダイナミクスを表現するディープネットワークアーキテクチャのファミリを設計する。
これらのネットワークは,ノイズ観測から不連続な接触事象をデータ効率良く学習できることを示す。
以上の結果から,タッチフィードバックの理想化形態は,この学習課題を扱いやすくするための重要な要素であることが示唆された。
論文 参考訳(メタデータ) (2021-02-22T17:33:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。