論文の概要: Sobolev-type embeddings for neural network approximation spaces
- arxiv url: http://arxiv.org/abs/2110.15304v1
- Date: Thu, 28 Oct 2021 17:11:38 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-29 16:22:25.442758
- Title: Sobolev-type embeddings for neural network approximation spaces
- Title(参考訳): ニューラルネットワーク近似空間に対するソボレフ型埋め込み
- Authors: Philipp Grohs, Felix Voigtlaender
- Abstract要約: 近似可能な速度に応じて関数を分類するニューラルネットワーク近似空間を考察する。
p$の異なる値に対して、これらの空間間の埋め込み定理を証明する。
古典函数空間の場合と同様、可積分性を高めるために「滑らかさ」(すなわち近似率)を交換できる。
- 参考スコア(独自算出の注目度): 5.863264019032882
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider neural network approximation spaces that classify functions
according to the rate at which they can be approximated (with error measured in
$L^p$) by ReLU neural networks with an increasing number of coefficients,
subject to bounds on the magnitude of the coefficients and the number of hidden
layers. We prove embedding theorems between these spaces for different values
of $p$. Furthermore, we derive sharp embeddings of these approximation spaces
into H\"older spaces. We find that, analogous to the case of classical function
spaces (such as Sobolev spaces, or Besov spaces) it is possible to trade
"smoothness" (i.e., approximation rate) for increased integrability.
Combined with our earlier results in [arXiv:2104.02746], our embedding
theorems imply a somewhat surprising fact related to "learning" functions from
a given neural network space based on point samples: if accuracy is measured
with respect to the uniform norm, then an optimal "learning" algorithm for
reconstructing functions that are well approximable by ReLU neural networks is
simply given by piecewise constant interpolation on a tensor product grid.
- Abstract(参考訳): 本稿では,ReLUニューラルネットワークの係数の増大による誤差(L^p$)を近似できる速度に応じて関数を分類するニューラルネットワーク近似空間について考察する。
p$の異なる値に対して、これらの空間間の埋め込み定理を証明する。
Furthermore, we derive sharp embeddings of these approximation spaces into H\"older spaces. We find that, analogous to the case of classical function spaces (such as Sobolev spaces, or Besov spaces) it is possible to trade "smoothness" (i.e., approximation rate) for increased integrability. Combined with our earlier results in [arXiv:2104.02746], our embedding theorems imply a somewhat surprising fact related to "learning" functions from a given neural network space based on point samples: if accuracy is measured with respect to the uniform norm, then an optimal "learning" algorithm for reconstructing functions that are well approximable by ReLU neural networks is simply given by piecewise constant interpolation on a tensor product grid.
関連論文リスト
- Dimension-independent learning rates for high-dimensional classification
problems [53.622581586464634]
各RBV2$関数は、重みが有界なニューラルネットワークによって近似可能であることを示す。
次に、分類関数を近似した有界重みを持つニューラルネットワークの存在を証明する。
論文 参考訳(メタデータ) (2024-09-26T16:02:13Z) - Promises and Pitfalls of the Linearized Laplace in Bayesian Optimization [73.80101701431103]
線形化ラプラス近似(LLA)はベイズニューラルネットワークの構築に有効で効率的であることが示されている。
ベイズ最適化におけるLLAの有用性について検討し,その性能と柔軟性を強調した。
論文 参考訳(メタデータ) (2023-04-17T14:23:43Z) - Gradient Descent in Neural Networks as Sequential Learning in RKBS [63.011641517977644]
初期重みの有限近傍にニューラルネットワークの正確な電力系列表現を構築する。
幅にかかわらず、勾配降下によって生成されたトレーニングシーケンスは、正規化された逐次学習によって正確に複製可能であることを証明した。
論文 参考訳(メタデータ) (2023-02-01T03:18:07Z) - Optimal Approximation Complexity of High-Dimensional Functions with
Neural Networks [3.222802562733787]
本稿では、ReLUと$x2$の両方を活性化関数として使用するニューラルネットワークの特性について検討する。
いくつかの文脈において、低局所次元を利用して次元の呪いを克服し、未知の低次元部分空間に最適な近似値を得る方法を示す。
論文 参考訳(メタデータ) (2023-01-30T17:29:19Z) - Kernel-based off-policy estimation without overlap: Instance optimality
beyond semiparametric efficiency [53.90687548731265]
本研究では,観測データに基づいて線形関数を推定するための最適手順について検討する。
任意の凸および対称函数クラス $mathcalF$ に対して、平均二乗誤差で有界な非漸近局所ミニマックスを導出する。
論文 参考訳(メタデータ) (2023-01-16T02:57:37Z) - Near-Minimax Optimal Estimation With Shallow ReLU Neural Networks [19.216784367141972]
本研究では,浅層(単層)ReLUニューラルネットワークを用いた雑音データから未知の関数を推定する問題について検討する。
我々は、データ生成関数がラドン領域における二階有界変動関数の空間に属するとき、これらのニューラルネットワーク推定器の性能を定量化する。
論文 参考訳(メタデータ) (2021-09-18T05:56:06Z) - The Separation Capacity of Random Neural Networks [78.25060223808936]
標準ガウス重みと一様分布バイアスを持つ十分に大きな2層ReLUネットワークは、この問題を高い確率で解くことができることを示す。
我々は、相互複雑性という新しい概念の観点から、データの関連構造を定量化する。
論文 参考訳(メタデータ) (2021-07-31T10:25:26Z) - Approximation with Neural Networks in Variable Lebesgue Spaces [1.0152838128195465]
本稿では、可変ルベーグ空間におけるニューラルネットワークによる普遍近似特性について述べる。
空間の指数関数が有界となると、任意の所望の精度で全ての関数を浅いニューラルネットワークで近似できることを示す。
論文 参考訳(メタデータ) (2020-07-08T14:52:48Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
一般化構造方程式モデル(SEM)のクラスにおける推定について検討する。
線形作用素方程式をmin-maxゲームとして定式化し、ニューラルネットワーク(NN)でパラメータ化し、勾配勾配を用いてニューラルネットワークのパラメータを学習する。
提案手法は,サンプル分割を必要とせず,確固とした収束性を持つNNをベースとしたSEMの抽出可能な推定手順を初めて提供する。
論文 参考訳(メタデータ) (2020-07-02T17:55:47Z) - Approximation with Tensor Networks. Part I: Approximation Spaces [0.0]
テンソルネットワーク(TN)による関数の近似について検討する。
一次元のルベーグ$Lp$-空間はテンソル化によって任意の順序のテンソル積空間と同一視できることを示す。
これらの近似クラスの函数はベソフの滑らかさを持たないことを示す。
論文 参考訳(メタデータ) (2020-06-30T21:32:59Z) - Approximation in shift-invariant spaces with deep ReLU neural networks [7.7084107194202875]
拡張シフト不変空間における近似関数に対する深部ReLUニューラルネットワークの表現力について検討する。
近似誤差境界は、ニューラルネットワークの幅と深さに対して推定される。
論文 参考訳(メタデータ) (2020-05-25T07:23:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。