論文の概要: Topological Relational Learning on Graphs
- arxiv url: http://arxiv.org/abs/2110.15529v1
- Date: Fri, 29 Oct 2021 04:03:27 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-01 22:45:52.944621
- Title: Topological Relational Learning on Graphs
- Title(参考訳): グラフのトポロジ的関係学習
- Authors: Yuzhou Chen, Baris Coskunuzer, Yulia R. Gel
- Abstract要約: グラフニューラルネットワーク(GNN)は、グラフ分類と表現学習のための強力なツールとして登場した。
本稿では,GNNに高階グラフ情報を統合可能な新しいトポロジカルリレーショナル推論(TRI)を提案する。
新しいTRI-GNNは、6つの7つのグラフで14の最先端のベースラインを上回り、摂動に対して高い堅牢性を示すことを示す。
- 参考スコア(独自算出の注目度): 2.4692806302088868
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph neural networks (GNNs) have emerged as a powerful tool for graph
classification and representation learning. However, GNNs tend to suffer from
over-smoothing problems and are vulnerable to graph perturbations. To address
these challenges, we propose a novel topological neural framework of
topological relational inference (TRI) which allows for integrating
higher-order graph information to GNNs and for systematically learning a local
graph structure. The key idea is to rewire the original graph by using the
persistent homology of the small neighborhoods of nodes and then to incorporate
the extracted topological summaries as the side information into the local
algorithm. As a result, the new framework enables us to harness both the
conventional information on the graph structure and information on the graph
higher order topological properties. We derive theoretical stability guarantees
for the new local topological representation and discuss their implications on
the graph algebraic connectivity. The experimental results on node
classification tasks demonstrate that the new TRI-GNN outperforms all 14
state-of-the-art baselines on 6 out 7 graphs and exhibit higher robustness to
perturbations, yielding up to 10\% better performance under noisy scenarios.
- Abstract(参考訳): グラフニューラルネットワーク(gnns)は、グラフ分類と表現学習の強力なツールとして登場した。
しかし、GNNは過度に滑らかな問題に悩まされ、グラフの摂動に弱い傾向にある。
これらの課題に対処するため,我々は,高次グラフ情報をgnnに統合し,局所グラフ構造を体系的に学習する,トポロジカル関係推論(tri)の新たなトポロジカルニューラルフレームワークを提案する。
鍵となる考え方は、ノードの小さな近傍の永続的ホモロジーを用いて元のグラフを再構成し、抽出したトポロジ的要約を局所アルゴリズムの側情報として組み込むことである。
その結果,グラフ構造に関する従来の情報と,グラフ上の高次位相特性に関する情報の両方を利用することが可能となった。
我々は、新しい局所位相表現に対する理論的安定性の保証を導出し、それらのグラフ代数的接続性への影響について論じる。
ノード分類タスクにおける実験の結果,新しいtri-gnnは,6つの7つのグラフにおいて14の最先端ベースラインを上回り,摂動に対して高い頑健性を示し,雑音条件下では最大10-%の優れた性能が得られることがわかった。
関連論文リスト
- GNNAnatomy: Systematic Generation and Evaluation of Multi-Level Explanations for Graph Neural Networks [20.05098366613674]
本稿では,グラフ分類タスクの多段階説明の生成と評価を目的とした視覚解析システムであるGNNAnatomyを紹介する。
GNNAnatomyは、グラフレット、原始グラフサブ構造を用いて、GNN予測とグラフレット周波数の相関を分析することにより、グラフクラスで最も重要なサブ構造を識別する。
社会学・生物学領域からの合成および実世界のグラフデータセットのケーススタディを通して,GNN解剖学の有効性を実証する。
論文 参考訳(メタデータ) (2024-06-06T23:09:54Z) - DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
グラフニューラルネットワーク(GNN)は、複雑な構造を持つグラフ上での表現学習の堅牢性を示す。
ノードのより包括的な埋め込み表現を得るために、Decoupled Graph Neural Networks (DGNN)と呼ばれる新しいGNNフレームワークが導入された。
複数のグラフベンチマークデータセットを用いて、ノード分類タスクにおけるDGNNの優位性を検証した。
論文 参考訳(メタデータ) (2024-01-28T06:43:13Z) - Tensor-view Topological Graph Neural Network [16.433092191206534]
グラフニューラルネットワーク(GNN)は最近、グラフ学習において注目を集めている。
既存のGNNは、各ノード周辺の非常に限られた地区からのローカル情報のみを使用する。
本稿では,単純かつ効果的な深層学習のクラスであるTopological Graph Neural Network (TTG-NN)を提案する。
実データ実験により,提案したTTG-NNは,グラフベンチマークにおいて20の最先端手法より優れていた。
論文 参考訳(メタデータ) (2024-01-22T14:55:01Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
我々は,GNN予測に対する忠実な説明を提供するためにDGREEを提案する。
GNNの情報生成と集約機構を分解することにより、DECREEは入力グラフの特定のコンポーネントのコントリビューションを最終的な予測に追跡することができる。
また,従来の手法で見過ごされるグラフノード間の複雑な相互作用を明らかにするために,サブグラフレベルの解釈アルゴリズムを設計する。
論文 参考訳(メタデータ) (2023-05-22T10:29:52Z) - Topological Pooling on Graphs [24.584372324701885]
グラフニューラルネットワーク(GNN)は、さまざまなグラフ学習タスクにおいて大きな成功を収めている。
そこで我々は,新しいトポロジカルプール層とビジター複合型トポロジカル埋め込み機構を提案する。
Wit-TopoPoolは、すべてのデータセットで競合他社よりも大幅に優れています。
論文 参考訳(メタデータ) (2023-03-25T19:30:46Z) - Relation Embedding based Graph Neural Networks for Handling
Heterogeneous Graph [58.99478502486377]
我々は、同種GNNが不均一グラフを扱うのに十分な能力を持つように、シンプルで効率的なフレームワークを提案する。
具体的には、エッジ型関係と自己ループ接続の重要性を埋め込むために、関係1つのパラメータのみを使用する関係埋め込みベースのグラフニューラルネットワーク(RE-GNN)を提案する。
論文 参考訳(メタデータ) (2022-09-23T05:24:18Z) - Learning Graph Structure from Convolutional Mixtures [119.45320143101381]
本稿では、観測されたグラフと潜伏グラフのグラフ畳み込み関係を提案し、グラフ学習タスクをネットワーク逆(デコンボリューション)問題として定式化する。
固有分解に基づくスペクトル法の代わりに、近似勾配反復をアンロール・トランケートして、グラフデコンボリューションネットワーク(GDN)と呼ばれるパラメータ化ニューラルネットワークアーキテクチャに到達させる。
GDNは、教師付き方式でグラフの分布を学習し、損失関数を適応させることでリンク予測やエッジウェイト回帰タスクを実行し、本質的に帰納的である。
論文 参考訳(メタデータ) (2022-05-19T14:08:15Z) - Discovering the Representation Bottleneck of Graph Neural Networks from
Multi-order Interactions [51.597480162777074]
グラフニューラルネットワーク(GNN)は、ノード機能を伝搬し、インタラクションを構築するためにメッセージパッシングパラダイムに依存している。
最近の研究は、異なるグラフ学習タスクはノード間の異なる範囲の相互作用を必要とすることを指摘している。
科学領域における2つの共通グラフ構築法、すなわち、emphK-nearest neighbor(KNN)グラフとemphfully-connected(FC)グラフについて検討する。
論文 参考訳(メタデータ) (2022-05-15T11:38:14Z) - Towards Unsupervised Deep Graph Structure Learning [67.58720734177325]
本稿では,学習したグラフトポロジを外部ガイダンスなしでデータ自身で最適化する,教師なしグラフ構造学習パラダイムを提案する。
具体的には、元のデータから"アンカーグラフ"として学習目標を生成し、対照的な損失を用いてアンカーグラフと学習グラフとの一致を最大化する。
論文 参考訳(メタデータ) (2022-01-17T11:57:29Z) - Hierarchical Message-Passing Graph Neural Networks [12.207978823927386]
本稿では,新しい階層型メッセージパッシンググラフニューラルネットワークフレームワークを提案する。
鍵となるアイデアは、フラットグラフ内のすべてのノードをマルチレベルなスーパーグラフに再編成する階層構造を生成することである。
階層型コミュニティ対応グラフニューラルネットワーク(HC-GNN)と呼ばれる,このフレームワークを実装した最初のモデルを提案する。
論文 参考訳(メタデータ) (2020-09-08T13:11:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。