Towards Comparative Physical Interpretation of Spatial Variability Aware
Neural Networks: A Summary of Results
- URL: http://arxiv.org/abs/2110.15866v1
- Date: Fri, 29 Oct 2021 15:40:42 GMT
- Title: Towards Comparative Physical Interpretation of Spatial Variability Aware
Neural Networks: A Summary of Results
- Authors: Jayant Gupta, Carl Molnar, Gaoxiang Luo, Joe Knight and Shashi Shekhar
- Abstract summary: Given spatial Variability Aware Neural Networks (SVANNs), the goal is to investigate mathematical (or computational) models for comparative physical interpretation.
This work investigates physical interpretation of SVANNs using novel comparative approaches based on geographically heterogeneous features.
- Score: 0.7297229770329212
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Given Spatial Variability Aware Neural Networks (SVANNs), the goal is to
investigate mathematical (or computational) models for comparative physical
interpretation towards their transparency (e.g., simulatibility,
decomposability and algorithmic transparency). This problem is important due to
important use-cases such as reusability, debugging, and explainability to a
jury in a court of law. Challenges include a large number of model parameters,
vacuous bounds on generalization performance of neural networks, risk of
overfitting, sensitivity to noise, etc., which all detract from the ability to
interpret the models. Related work on either model-specific or model-agnostic
post-hoc interpretation is limited due to a lack of consideration of physical
constraints (e.g., mass balance) and properties (e.g., second law of
geography). This work investigates physical interpretation of SVANNs using
novel comparative approaches based on geographically heterogeneous features.
The proposed approach on feature-based physical interpretation is evaluated
using a case-study on wetland mapping. The proposed physical interpretation
improves the transparency of SVANN models and the analytical results highlight
the trade-off between model transparency and model performance (e.g.,
F1-score). We also describe an interpretation based on geographically
heterogeneous processes modeled as partial differential equations (PDEs).
Related papers
- Disentangled Representation Learning for Parametric Partial Differential Equations [31.240283037552427]
We propose a new paradigm for learning disentangled representations from neural operator parameters.
DisentangO is a novel hyper-neural operator architecture designed to unveil and disentangle the latent physical factors of variation embedded within the black-box neural operator parameters.
We show that DisentangO effectively extracts meaningful and interpretable latent features, bridging the divide between predictive performance and physical understanding in neural operator frameworks.
arXiv Detail & Related papers (2024-10-03T01:40:39Z) - Improving Network Interpretability via Explanation Consistency Evaluation [56.14036428778861]
We propose a framework that acquires more explainable activation heatmaps and simultaneously increase the model performance.
Specifically, our framework introduces a new metric, i.e., explanation consistency, to reweight the training samples adaptively in model learning.
Our framework then promotes the model learning by paying closer attention to those training samples with a high difference in explanations.
arXiv Detail & Related papers (2024-08-08T17:20:08Z) - Understanding Disparities in Post Hoc Machine Learning Explanation [2.965442487094603]
Previous work has highlighted that existing post-hoc explanation methods exhibit disparities in explanation fidelity (across 'race' and 'gender' as sensitive attributes)
We specifically assess challenges to explanation disparities that originate from properties of the data.
Results indicate that disparities in model explanations can also depend on data and model properties.
arXiv Detail & Related papers (2024-01-25T22:09:28Z) - Analyzing the Effects of Handling Data Imbalance on Learned Features
from Medical Images by Looking Into the Models [50.537859423741644]
Training a model on an imbalanced dataset can introduce unique challenges to the learning problem.
We look deeper into the internal units of neural networks to observe how handling data imbalance affects the learned features.
arXiv Detail & Related papers (2022-04-04T09:38:38Z) - Equivariance Allows Handling Multiple Nuisance Variables When Analyzing
Pooled Neuroimaging Datasets [53.34152466646884]
In this paper, we show how bringing recent results on equivariant representation learning instantiated on structured spaces together with simple use of classical results on causal inference provides an effective practical solution.
We demonstrate how our model allows dealing with more than one nuisance variable under some assumptions and can enable analysis of pooled scientific datasets in scenarios that would otherwise entail removing a large portion of the samples.
arXiv Detail & Related papers (2022-03-29T04:54:06Z) - Combining Discrete Choice Models and Neural Networks through Embeddings:
Formulation, Interpretability and Performance [10.57079240576682]
This study proposes a novel approach that combines theory and data-driven choice models using Artificial Neural Networks (ANNs)
In particular, we use continuous vector representations, called embeddings, for encoding categorical or discrete explanatory variables.
Our models deliver state-of-the-art predictive performance, outperforming existing ANN-based models while drastically reducing the number of required network parameters.
arXiv Detail & Related papers (2021-09-24T15:55:31Z) - On the Lack of Robust Interpretability of Neural Text Classifiers [14.685352584216757]
We assess the robustness of interpretations of neural text classifiers based on pretrained Transformer encoders.
Both tests show surprising deviations from expected behavior, raising questions about the extent of insights that practitioners may draw from interpretations.
arXiv Detail & Related papers (2021-06-08T18:31:02Z) - A comprehensive comparative evaluation and analysis of Distributional
Semantic Models [61.41800660636555]
We perform a comprehensive evaluation of type distributional vectors, either produced by static DSMs or obtained by averaging the contextualized vectors generated by BERT.
The results show that the alleged superiority of predict based models is more apparent than real, and surely not ubiquitous.
We borrow from cognitive neuroscience the methodology of Representational Similarity Analysis (RSA) to inspect the semantic spaces generated by distributional models.
arXiv Detail & Related papers (2021-05-20T15:18:06Z) - Ada-SISE: Adaptive Semantic Input Sampling for Efficient Explanation of
Convolutional Neural Networks [26.434705114982584]
We propose an efficient interpretation method for convolutional neural networks.
Experimental results show that the proposed method can reduce the execution time up to 30%.
arXiv Detail & Related papers (2021-02-15T19:10:00Z) - Generative Counterfactuals for Neural Networks via Attribute-Informed
Perturbation [51.29486247405601]
We design a framework to generate counterfactuals for raw data instances with the proposed Attribute-Informed Perturbation (AIP)
By utilizing generative models conditioned with different attributes, counterfactuals with desired labels can be obtained effectively and efficiently.
Experimental results on real-world texts and images demonstrate the effectiveness, sample quality as well as efficiency of our designed framework.
arXiv Detail & Related papers (2021-01-18T08:37:13Z) - Interpretable Multi-dataset Evaluation for Named Entity Recognition [110.64368106131062]
We present a general methodology for interpretable evaluation for the named entity recognition (NER) task.
The proposed evaluation method enables us to interpret the differences in models and datasets, as well as the interplay between them.
By making our analysis tool available, we make it easy for future researchers to run similar analyses and drive progress in this area.
arXiv Detail & Related papers (2020-11-13T10:53:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.