Debugging and Runtime Analysis of Neural Networks with VLMs (A Case Study)
- URL: http://arxiv.org/abs/2503.17416v1
- Date: Fri, 21 Mar 2025 01:12:57 GMT
- Title: Debugging and Runtime Analysis of Neural Networks with VLMs (A Case Study)
- Authors: Boyue Caroline Hu, Divya Gopinath, Corina S. Pasareanu, Nina Narodytska, Ravi Mangal, Susmit Jha,
- Abstract summary: We show the utility of semantic heatmaps for fault localization in vision models.<n>We propose a lightweight runtime analysis to detect and filter-out defects at runtime.
- Score: 20.420310876464924
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Debugging of Deep Neural Networks (DNNs), particularly vision models, is very challenging due to the complex and opaque decision-making processes in these networks. In this paper, we explore multi-modal Vision-Language Models (VLMs), such as CLIP, to automatically interpret the opaque representation space of vision models using natural language. This in turn, enables a semantic analysis of model behavior using human-understandable concepts, without requiring costly human annotations. Key to our approach is the notion of semantic heatmap, that succinctly captures the statistical properties of DNNs in terms of the concepts discovered with the VLM and that are computed off-line using a held-out data set. We show the utility of semantic heatmaps for fault localization -- an essential step in debugging -- in vision models. Our proposed technique helps localize the fault in the network (encoder vs head) and also highlights the responsible high-level concepts, by leveraging novel differential heatmaps, which summarize the semantic differences between the correct and incorrect behaviour of the analyzed DNN. We further propose a lightweight runtime analysis to detect and filter-out defects at runtime, thus improving the reliability of the analyzed DNNs. The runtime analysis works by measuring and comparing the similarity between the heatmap computed for a new (unseen) input and the heatmaps computed a-priori for correct vs incorrect DNN behavior. We consider two types of defects: misclassifications and vulnerabilities to adversarial attacks. We demonstrate the debugging and runtime analysis on a case study involving a complex ResNet-based classifier trained on the RIVAL10 dataset.
Related papers
- Neural Approaches to SAT Solving: Design Choices and Interpretability [3.876394880838347]
We provide a comprehensive evaluation of graph neural networks applied to Boolean satisfiability problems.
We introduce several training improvements, particularly a novel closest assignment supervision method.
Our experiments demonstrate the suitability of variable-clause graph representations with recurrent neural network updates.
arXiv Detail & Related papers (2025-04-01T20:31:01Z) - Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - On Discriminative Probabilistic Modeling for Self-Supervised Representation Learning [85.75164588939185]
We study the discriminative probabilistic modeling on a continuous domain for the data prediction task of (multimodal) self-supervised representation learning.<n>We conduct generalization error analysis to reveal the limitation of current InfoNCE-based contrastive loss for self-supervised representation learning.<n>We propose a novel non-parametric method for approximating the sum of conditional probability densities required by MIS.
arXiv Detail & Related papers (2024-10-11T18:02:46Z) - Unsupervised Model Diagnosis [49.36194740479798]
This paper proposes Unsupervised Model Diagnosis (UMO) to produce semantic counterfactual explanations without any user guidance.
Our approach identifies and visualizes changes in semantics, and then matches these changes to attributes from wide-ranging text sources.
arXiv Detail & Related papers (2024-10-08T17:59:03Z) - Neural Networks Decoded: Targeted and Robust Analysis of Neural Network Decisions via Causal Explanations and Reasoning [9.947555560412397]
We introduce TRACER, a novel method grounded in causal inference theory to estimate the causal dynamics underpinning DNN decisions.
Our approach systematically intervenes on input features to observe how specific changes propagate through the network, affecting internal activations and final outputs.
TRACER further enhances explainability by generating counterfactuals that reveal possible model biases and offer contrastive explanations for misclassifications.
arXiv Detail & Related papers (2024-10-07T20:44:53Z) - Improving Network Interpretability via Explanation Consistency Evaluation [56.14036428778861]
We propose a framework that acquires more explainable activation heatmaps and simultaneously increase the model performance.
Specifically, our framework introduces a new metric, i.e., explanation consistency, to reweight the training samples adaptively in model learning.
Our framework then promotes the model learning by paying closer attention to those training samples with a high difference in explanations.
arXiv Detail & Related papers (2024-08-08T17:20:08Z) - Comprehensive Analysis of Network Robustness Evaluation Based on Convolutional Neural Networks with Spatial Pyramid Pooling [4.366824280429597]
Connectivity robustness, a crucial aspect for understanding, optimizing, and repairing complex networks, has traditionally been evaluated through simulations.
We address these challenges by designing a convolutional neural networks (CNN) model with spatial pyramid pooling networks (SPP-net)
We show that the proposed CNN model consistently achieves accurate evaluations of both attack curves and robustness values across all removal scenarios.
arXiv Detail & Related papers (2023-08-10T09:54:22Z) - Interpretable Anomaly Detection in Cellular Networks by Learning
Concepts in Variational Autoencoders [8.612111588129167]
This paper addresses the challenges of detecting anomalies in cellular networks in an interpretable way.
We propose a new approach using variational autoencoders (VAEs) that learn interpretable representations of the latent space for each Key Performance Indicator (KPI) in the dataset.
arXiv Detail & Related papers (2023-06-28T05:50:17Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
We present a novel contrastive self-supervised learning framework for anomaly detection on attributed networks.
Our framework fully exploits the local information from network data by sampling a novel type of contrastive instance pair.
A graph neural network-based contrastive learning model is proposed to learn informative embedding from high-dimensional attributes and local structure.
arXiv Detail & Related papers (2021-02-27T03:17:20Z) - i-Algebra: Towards Interactive Interpretability of Deep Neural Networks [41.13047686374529]
We present i-Algebra, a first-of-its-kind interactive framework for interpreting deep neural networks (DNNs)
At its core is a library of atomic, composable operators, which explain model behaviors at varying input granularity, during different inference stages, and from distinct interpretation perspectives.
We conduct user studies in a set of representative analysis tasks, including inspecting adversarial inputs, resolving model inconsistency, and cleansing contaminated data, all demonstrating its promising usability.
arXiv Detail & Related papers (2021-01-22T19:22:57Z) - Firearm Detection via Convolutional Neural Networks: Comparing a
Semantic Segmentation Model Against End-to-End Solutions [68.8204255655161]
Threat detection of weapons and aggressive behavior from live video can be used for rapid detection and prevention of potentially deadly incidents.
One way for achieving this is through the use of artificial intelligence and, in particular, machine learning for image analysis.
We compare a traditional monolithic end-to-end deep learning model and a previously proposed model based on an ensemble of simpler neural networks detecting fire-weapons via semantic segmentation.
arXiv Detail & Related papers (2020-12-17T15:19:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.