Convergence and Optimality of Policy Gradient Methods in Weakly Smooth
Settings
- URL: http://arxiv.org/abs/2111.00185v1
- Date: Sat, 30 Oct 2021 06:31:01 GMT
- Title: Convergence and Optimality of Policy Gradient Methods in Weakly Smooth
Settings
- Authors: Matthew Shunshi Zhang, Murat Erdogdu, Animesh Garg
- Abstract summary: We establish explicit convergence rates of policy gradient methods without relying on opaque conditions.
We also characterize the sufficiency conditions for the ergodicity of near-linear MDPs.
We provide conditions and analysis for optimality of the converged policies.
- Score: 17.437408088239142
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Policy gradient methods have been frequently applied to problems in control
and reinforcement learning with great success, yet existing convergence
analysis still relies on non-intuitive, impractical and often opaque
conditions. In particular, existing rates are achieved in limited settings,
under strict smoothness and bounded conditions. In this work, we establish
explicit convergence rates of policy gradient methods without relying on these
conditions, instead extending the convergence regime to weakly smooth policy
classes with $L_2$ integrable gradient. We provide intuitive examples to
illustrate the insight behind these new conditions. We also characterize the
sufficiency conditions for the ergodicity of near-linear MDPs, which represent
an important class of problems. Notably, our analysis also shows that fast
convergence rates are achievable for both the standard policy gradient and the
natural policy gradient algorithms under these assumptions. Lastly we provide
conditions and analysis for optimality of the converged policies.
Related papers
- Strongly-polynomial time and validation analysis of policy gradient methods [3.722665817361884]
This paper proposes a novel termination criterion, termed the advantage gap function, for finite state and action Markov decision processes (MDP) and reinforcement learning (RL)
By incorporating this advantage gap function into the design of step size rules, we deriving a new linear rate of convergence that is independent of the stationary state distribution of the optimal policy.
This is the first time that such strong convergence properties have been established for policy gradient methods.
arXiv Detail & Related papers (2024-09-28T18:56:48Z) - Learning Optimal Deterministic Policies with Stochastic Policy Gradients [62.81324245896716]
Policy gradient (PG) methods are successful approaches to deal with continuous reinforcement learning (RL) problems.
In common practice, convergence (hyper)policies are learned only to deploy their deterministic version.
We show how to tune the exploration level used for learning to optimize the trade-off between the sample complexity and the performance of the deployed deterministic policy.
arXiv Detail & Related papers (2024-05-03T16:45:15Z) - Elementary Analysis of Policy Gradient Methods [3.468656086349638]
This paper focuses on the discounted MDP setting and conduct a systematic study of the aforementioned policy optimization methods.
Several novel results are presented, including 1) global linear convergence of projected policy gradient for any constant step size, 2) sublinear convergence of softmax policy gradient for any constant step size, 3) global linear convergence of softmax natural policy gradient for any constant step size, 4) global linear convergence of entropy regularized softmax policy gradient for a wider range of constant step sizes than existing result, 5) tight local linear convergence rate of entropy regularized natural policy gradient, and 6) a new and concise local quadratic convergence rate of soft
arXiv Detail & Related papers (2024-04-04T11:16:16Z) - Optimization Landscape of Policy Gradient Methods for Discrete-time
Static Output Feedback [22.21598324895312]
This paper analyzes the optimization landscape inherent to policy gradient methods when applied to static output feedback control.
We derive novel findings regarding convergence (and nearly dimension-free rate) to stationary points for three policy gradient methods.
We provide proof that the vanilla policy gradient method exhibits linear convergence towards local minima when near such minima.
arXiv Detail & Related papers (2023-10-29T14:25:57Z) - Last-Iterate Convergent Policy Gradient Primal-Dual Methods for
Constrained MDPs [107.28031292946774]
We study the problem of computing an optimal policy of an infinite-horizon discounted Markov decision process (constrained MDP)
We develop two single-time-scale policy-based primal-dual algorithms with non-asymptotic convergence of their policy iterates to an optimal constrained policy.
To the best of our knowledge, this work appears to be the first non-asymptotic policy last-iterate convergence result for single-time-scale algorithms in constrained MDPs.
arXiv Detail & Related papers (2023-06-20T17:27:31Z) - The Role of Baselines in Policy Gradient Optimization [83.42050606055822]
We show that the emphstate value baseline allows on-policy.
emphnatural policy gradient (NPG) to converge to a globally optimal.
policy at an $O (1/t) rate gradient.
We find that the primary effect of the value baseline is to textbfreduce the aggressiveness of the updates rather than their variance.
arXiv Detail & Related papers (2023-01-16T06:28:00Z) - Linear Convergence of Natural Policy Gradient Methods with Log-Linear
Policies [115.86431674214282]
We consider infinite-horizon discounted Markov decision processes and study the convergence rates of the natural policy gradient (NPG) and the Q-NPG methods with the log-linear policy class.
We show that both methods attain linear convergence rates and $mathcalO (1/epsilon2)$ sample complexities using a simple, non-adaptive geometrically increasing step size.
arXiv Detail & Related papers (2022-10-04T06:17:52Z) - On the Convergence Rates of Policy Gradient Methods [9.74841674275568]
We consider geometrically discounted dominance problems with finite state sub spaces.
We show that with direct gradient pararization in a sample we can analyze the general complexity of a gradient.
arXiv Detail & Related papers (2022-01-19T07:03:37Z) - On Linear Convergence of Policy Gradient Methods for Finite MDPs [8.00114449574708]
We revisit the finite time analysis of policy gradient methods in the one of the simplest settings.
We show that many variants of policy gradient methods succeed with large step-sizes and attain a linear rate of convergence.
arXiv Detail & Related papers (2020-07-21T22:35:37Z) - Stable Policy Optimization via Off-Policy Divergence Regularization [50.98542111236381]
Trust Region Policy Optimization (TRPO) and Proximal Policy Optimization (PPO) are among the most successful policy gradient approaches in deep reinforcement learning (RL)
We propose a new algorithm which stabilizes the policy improvement through a proximity term that constrains the discounted state-action visitation distribution induced by consecutive policies to be close to one another.
Our proposed method can have a beneficial effect on stability and improve final performance in benchmark high-dimensional control tasks.
arXiv Detail & Related papers (2020-03-09T13:05:47Z) - Complexity Guarantees for Polyak Steps with Momentum [76.97851351276165]
We study a class of methods, based on Polyak steps, where this knowledge is substituted by that of the optimal value, $f_*$.
We first show slightly improved convergence bounds than previously known for the classical case of simple gradient descent with Polyak steps, we then derive an accelerated gradient method with Polyak steps and momentum, along with convergence guarantees.
arXiv Detail & Related papers (2020-02-03T17:50:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.