Continuous Convolutional Neural Networks: Coupled Neural PDE and ODE
- URL: http://arxiv.org/abs/2111.00343v1
- Date: Sat, 30 Oct 2021 21:45:00 GMT
- Title: Continuous Convolutional Neural Networks: Coupled Neural PDE and ODE
- Authors: Mansura Habiba, Barak A. Pearlmutter
- Abstract summary: This work proposes a variant of Convolutional Neural Networks (CNNs) that can learn the hidden dynamics of a physical system.
Instead of considering the physical system such as image, time -series as a system of multiple layers, this new technique can model a system in the form of Differential Equation (DEs)
- Score: 1.1897857181479061
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent work in deep learning focuses on solving physical systems in the
Ordinary Differential Equation or Partial Differential Equation. This current
work proposed a variant of Convolutional Neural Networks (CNNs) that can learn
the hidden dynamics of a physical system using ordinary differential equation
(ODEs) systems (ODEs) and Partial Differential Equation systems (PDEs). Instead
of considering the physical system such as image, time -series as a system of
multiple layers, this new technique can model a system in the form of
Differential Equation (DEs). The proposed method has been assessed by solving
several steady-state PDEs on irregular domains, including heat equations,
Navier-Stokes equations.
Related papers
- Neural Laplace for learning Stochastic Differential Equations [0.0]
Neuralplace is a unified framework for learning diverse classes of differential equations (DE)
For different classes of DE, this framework outperforms other approaches relying on neural networks that aim to learn classes of ordinary differential equations (ODE)
arXiv Detail & Related papers (2024-06-07T14:29:30Z) - Pretraining Codomain Attention Neural Operators for Solving Multiphysics PDEs [85.40198664108624]
We propose Codomain Attention Neural Operator (CoDA-NO) to solve multiphysics problems with PDEs.
CoDA-NO tokenizes functions along the codomain or channel space, enabling self-supervised learning or pretraining of multiple PDE systems.
We find CoDA-NO to outperform existing methods by over 36% on complex downstream tasks with limited data.
arXiv Detail & Related papers (2024-03-19T08:56:20Z) - Neural Fractional Differential Equations [2.812395851874055]
Fractional Differential Equations (FDEs) are essential tools for modelling complex systems in science and engineering.
We propose the Neural FDE, a novel deep neural network architecture that adjusts a FDE to the dynamics of data.
arXiv Detail & Related papers (2024-03-05T07:45:29Z) - Time and State Dependent Neural Delay Differential Equations [0.5249805590164901]
Delayed terms are encountered in the governing equations of a large class of problems ranging from physics and engineering to medicine and economics.
We introduce Neural State-Dependent DDE, a framework that can model multiple and state- and time-dependent delays.
We show that our method is competitive and outperforms other continuous-class models on a wide variety of delayed dynamical systems.
arXiv Detail & Related papers (2023-06-26T09:35:56Z) - Semi-supervised Learning of Partial Differential Operators and Dynamical
Flows [68.77595310155365]
We present a novel method that combines a hyper-network solver with a Fourier Neural Operator architecture.
We test our method on various time evolution PDEs, including nonlinear fluid flows in one, two, and three spatial dimensions.
The results show that the new method improves the learning accuracy at the time point of supervision point, and is able to interpolate and the solutions to any intermediate time.
arXiv Detail & Related papers (2022-07-28T19:59:14Z) - Neural Laplace: Learning diverse classes of differential equations in
the Laplace domain [86.52703093858631]
We propose a unified framework for learning diverse classes of differential equations (DEs) including all the aforementioned ones.
Instead of modelling the dynamics in the time domain, we model it in the Laplace domain, where the history-dependencies and discontinuities in time can be represented as summations of complex exponentials.
In the experiments, Neural Laplace shows superior performance in modelling and extrapolating the trajectories of diverse classes of DEs.
arXiv Detail & Related papers (2022-06-10T02:14:59Z) - Physics Informed RNN-DCT Networks for Time-Dependent Partial
Differential Equations [62.81701992551728]
We present a physics-informed framework for solving time-dependent partial differential equations.
Our model utilizes discrete cosine transforms to encode spatial and recurrent neural networks.
We show experimental results on the Taylor-Green vortex solution to the Navier-Stokes equations.
arXiv Detail & Related papers (2022-02-24T20:46:52Z) - NeuralPDE: Modelling Dynamical Systems from Data [0.44259821861543996]
We propose NeuralPDE, a model which combines convolutional neural networks (CNNs) with differentiable ODE solvers to model dynamical systems.
We show that the Method of Lines used in standard PDE solvers can be represented using convolutions which makes CNNs the natural choice to parametrize arbitrary PDE dynamics.
Our model can be applied to any data without requiring any prior knowledge about the governing PDE.
arXiv Detail & Related papers (2021-11-15T10:59:52Z) - Multi-objective discovery of PDE systems using evolutionary approach [77.34726150561087]
In the paper, a multi-objective co-evolution algorithm is described.
The single equations within the system and the system itself are evolved simultaneously to obtain the system.
In contrast to the single vector equation, a component-wise system is more suitable for expert interpretation and, therefore, for applications.
arXiv Detail & Related papers (2021-03-11T15:37:52Z) - Learning to Control PDEs with Differentiable Physics [102.36050646250871]
We present a novel hierarchical predictor-corrector scheme which enables neural networks to learn to understand and control complex nonlinear physical systems over long time frames.
We demonstrate that our method successfully develops an understanding of complex physical systems and learns to control them for tasks involving PDEs.
arXiv Detail & Related papers (2020-01-21T11:58:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.