NeuralPDE: Modelling Dynamical Systems from Data
- URL: http://arxiv.org/abs/2111.07671v1
- Date: Mon, 15 Nov 2021 10:59:52 GMT
- Title: NeuralPDE: Modelling Dynamical Systems from Data
- Authors: Andrzej Dulny and Andreas Hotho and Anna Krause
- Abstract summary: We propose NeuralPDE, a model which combines convolutional neural networks (CNNs) with differentiable ODE solvers to model dynamical systems.
We show that the Method of Lines used in standard PDE solvers can be represented using convolutions which makes CNNs the natural choice to parametrize arbitrary PDE dynamics.
Our model can be applied to any data without requiring any prior knowledge about the governing PDE.
- Score: 0.44259821861543996
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many physical processes such as weather phenomena or fluid mechanics are
governed by partial differential equations (PDEs). Modelling such dynamical
systems using Neural Networks is an emerging research field. However, current
methods are restricted in various ways: they require prior knowledge about the
governing equations, and are limited to linear or first-order equations. In
this work we propose NeuralPDE, a model which combines convolutional neural
networks (CNNs) with differentiable ODE solvers to model dynamical systems. We
show that the Method of Lines used in standard PDE solvers can be represented
using convolutions which makes CNNs the natural choice to parametrize arbitrary
PDE dynamics. Our model can be applied to any data without requiring any prior
knowledge about the governing PDE. We evaluate NeuralPDE on datasets generated
by solving a wide variety of PDEs, covering higher orders, non-linear equations
and multiple spatial dimensions.
Related papers
- Diffusion models as probabilistic neural operators for recovering unobserved states of dynamical systems [49.2319247825857]
We show that diffusion-based generative models exhibit many properties favourable for neural operators.
We propose to train a single model adaptable to multiple tasks, by alternating between the tasks during training.
arXiv Detail & Related papers (2024-05-11T21:23:55Z) - Neural Fractional Differential Equations [2.812395851874055]
Fractional Differential Equations (FDEs) are essential tools for modelling complex systems in science and engineering.
We propose the Neural FDE, a novel deep neural network architecture that adjusts a FDE to the dynamics of data.
arXiv Detail & Related papers (2024-03-05T07:45:29Z) - A Stable and Scalable Method for Solving Initial Value PDEs with Neural
Networks [52.5899851000193]
We develop an ODE based IVP solver which prevents the network from getting ill-conditioned and runs in time linear in the number of parameters.
We show that current methods based on this approach suffer from two key issues.
First, following the ODE produces an uncontrolled growth in the conditioning of the problem, ultimately leading to unacceptably large numerical errors.
arXiv Detail & Related papers (2023-04-28T17:28:18Z) - Learning Neural Constitutive Laws From Motion Observations for
Generalizable PDE Dynamics [97.38308257547186]
Many NN approaches learn an end-to-end model that implicitly models both the governing PDE and material models.
We argue that the governing PDEs are often well-known and should be explicitly enforced rather than learned.
We introduce a new framework termed "Neural Constitutive Laws" (NCLaw) which utilizes a network architecture that strictly guarantees standard priors.
arXiv Detail & Related papers (2023-04-27T17:42:24Z) - Neural Laplace: Learning diverse classes of differential equations in
the Laplace domain [86.52703093858631]
We propose a unified framework for learning diverse classes of differential equations (DEs) including all the aforementioned ones.
Instead of modelling the dynamics in the time domain, we model it in the Laplace domain, where the history-dependencies and discontinuities in time can be represented as summations of complex exponentials.
In the experiments, Neural Laplace shows superior performance in modelling and extrapolating the trajectories of diverse classes of DEs.
arXiv Detail & Related papers (2022-06-10T02:14:59Z) - Learning time-dependent PDE solver using Message Passing Graph Neural
Networks [0.0]
We introduce a graph neural network approach to finding efficient PDE solvers through learning using message-passing models.
We use graphs to represent PDE-data on an unstructured mesh and show that message passing graph neural networks (MPGNN) can parameterize governing equations.
We show that a recurrent graph neural network approach can find a temporal sequence of solutions to a PDE.
arXiv Detail & Related papers (2022-04-15T21:10:32Z) - Continuous Convolutional Neural Networks: Coupled Neural PDE and ODE [1.1897857181479061]
This work proposes a variant of Convolutional Neural Networks (CNNs) that can learn the hidden dynamics of a physical system.
Instead of considering the physical system such as image, time -series as a system of multiple layers, this new technique can model a system in the form of Differential Equation (DEs)
arXiv Detail & Related papers (2021-10-30T21:45:00Z) - Deep Neural Network Modeling of Unknown Partial Differential Equations
in Nodal Space [1.8010196131724825]
We present a framework for deep neural network (DNN) modeling of unknown time-dependent partial differential equations (PDE) using trajectory data.
We present a DNN structure that has a direct correspondence to the evolution operator of the underlying PDE.
A trained DNN defines a predictive model for the underlying unknown PDE over structureless grids.
arXiv Detail & Related papers (2021-06-07T13:27:09Z) - Neural ODE Processes [64.10282200111983]
We introduce Neural ODE Processes (NDPs), a new class of processes determined by a distribution over Neural ODEs.
We show that our model can successfully capture the dynamics of low-dimensional systems from just a few data-points.
arXiv Detail & Related papers (2021-03-23T09:32:06Z) - dNNsolve: an efficient NN-based PDE solver [62.997667081978825]
We introduce dNNsolve, that makes use of dual Neural Networks to solve ODEs/PDEs.
We show that dNNsolve is capable of solving a broad range of ODEs/PDEs in 1, 2 and 3 spacetime dimensions.
arXiv Detail & Related papers (2021-03-15T19:14:41Z) - Neural-PDE: A RNN based neural network for solving time dependent PDEs [6.560798708375526]
Partial differential equations (PDEs) play a crucial role in studying a vast number of problems in science and engineering.
We propose a sequence deep learning framework called Neural-PDE, which allows to automatically learn governing rules of any time-dependent PDE system.
In our experiments the Neural-PDE can efficiently extract the dynamics within 20 epochs training, and produces accurate predictions.
arXiv Detail & Related papers (2020-09-08T15:46:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.