Interpreting Deep Knowledge Tracing Model on EdNet Dataset
- URL: http://arxiv.org/abs/2111.00419v1
- Date: Sun, 31 Oct 2021 07:18:59 GMT
- Title: Interpreting Deep Knowledge Tracing Model on EdNet Dataset
- Authors: Deliang Wang, Yu Lu, Qinggang Meng, Penghe Chen
- Abstract summary: In this work, we perform the similar tasks but on a large and newly available dataset, called EdNet.
The preliminary experiment results show the effectiveness of the interpreting techniques.
- Score: 67.81797777936868
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: With more deep learning techniques being introduced into the knowledge
tracing domain, the interpretability issue of the knowledge tracing models has
aroused researchers' attention. Our previous study(Lu et al. 2020) on building
and interpreting the KT model mainly adopts the ASSISTment dataset(Feng,
Heffernan, and Koedinger 2009),, whose size is relatively small. In this work,
we perform the similar tasks but on a large and newly available dataset, called
EdNet(Choi et al. 2020). The preliminary experiment results show the
effectiveness of the interpreting techniques, while more questions and tasks
are worthy to be further explored and accomplished.
Related papers
- A Question-centric Multi-experts Contrastive Learning Framework for Improving the Accuracy and Interpretability of Deep Sequential Knowledge Tracing Models [26.294808618068146]
Knowledge tracing plays a crucial role in predicting students' future performance.
Deep neural networks (DNNs) have shown great potential in solving the KT problem.
However, there still exist some important challenges when applying deep learning techniques to model the KT process.
arXiv Detail & Related papers (2024-03-12T05:15:42Z) - Capture the Flag: Uncovering Data Insights with Large Language Models [90.47038584812925]
This study explores the potential of using Large Language Models (LLMs) to automate the discovery of insights in data.
We propose a new evaluation methodology based on a "capture the flag" principle, measuring the ability of such models to recognize meaningful and pertinent information (flags) in a dataset.
arXiv Detail & Related papers (2023-12-21T14:20:06Z) - Instruction Tuning for Large Language Models: A Survey [52.86322823501338]
We make a systematic review of the literature, including the general methodology of IT, the construction of IT datasets, the training of IT models, and applications to different modalities, domains and applications.
We also review the potential pitfalls of IT along with criticism against it, along with efforts pointing out current deficiencies of existing strategies and suggest some avenues for fruitful research.
arXiv Detail & Related papers (2023-08-21T15:35:16Z) - Dataset Distillation: A Comprehensive Review [76.26276286545284]
dataset distillation (DD) aims to derive a much smaller dataset containing synthetic samples, based on which the trained models yield performance comparable with those trained on the original dataset.
This paper gives a comprehensive review and summary of recent advances in DD and its application.
arXiv Detail & Related papers (2023-01-17T17:03:28Z) - What Makes Good Contrastive Learning on Small-Scale Wearable-based
Tasks? [59.51457877578138]
We study contrastive learning on the wearable-based activity recognition task.
This paper presents an open-source PyTorch library textttCL-HAR, which can serve as a practical tool for researchers.
arXiv Detail & Related papers (2022-02-12T06:10:15Z) - On the Interpretability of Deep Learning Based Models for Knowledge
Tracing [5.120837730908589]
Knowledge tracing allows Intelligent Tutoring Systems to infer which topics or skills a student has mastered.
Deep Learning based models like Deep Knowledge Tracing (DKT) and Dynamic Key-Value Memory Network (DKVMN) have achieved significant improvements.
However, these deep learning based models are not as interpretable as other models because the decision-making process learned by deep neural networks is not wholly understood.
arXiv Detail & Related papers (2021-01-27T11:55:03Z) - Do we need to go Deep? Knowledge Tracing with Big Data [5.218882272051637]
We use EdNet, the largest student interaction dataset publicly available in the education domain, to understand how accurately both deep and traditional models predict future student performances.
Our work observes that logistic regression models with carefully engineered features outperformed deep models from extensive experimentation.
arXiv Detail & Related papers (2021-01-20T22:40:38Z) - An Empirical Comparison of Deep Learning Models for Knowledge Tracing on
Large-Scale Dataset [10.329254031835953]
Knowledge tracing is a problem of modeling each student's mastery of knowledge concepts.
Recent release of large-scale student performance dataset citechoi 2019ednet motivates the analysis of performance of deep learning approaches.
arXiv Detail & Related papers (2021-01-16T04:58:17Z) - Deep Knowledge Tracing with Learning Curves [0.9088303226909278]
We propose a Convolution-Augmented Knowledge Tracing (CAKT) model in this paper.
The model employs three-dimensional convolutional neural networks to explicitly learn a student's recent experience on applying the same knowledge concept with that in the next question.
CAKT achieves the new state-of-the-art performance in predicting students' responses compared with existing models.
arXiv Detail & Related papers (2020-07-26T15:24:51Z) - Towards Interpretable Deep Learning Models for Knowledge Tracing [62.75876617721375]
We propose to adopt the post-hoc method to tackle the interpretability issue for deep learning based knowledge tracing (DLKT) models.
Specifically, we focus on applying the layer-wise relevance propagation (LRP) method to interpret RNN-based DLKT model.
Experiment results show the feasibility using the LRP method for interpreting the DLKT model's predictions.
arXiv Detail & Related papers (2020-05-13T04:03:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.