Learned Image Compression with Separate Hyperprior Decoders
- URL: http://arxiv.org/abs/2111.00485v1
- Date: Sun, 31 Oct 2021 13:01:56 GMT
- Title: Learned Image Compression with Separate Hyperprior Decoders
- Authors: Zhao Zan, Chao Liu, Heming Sun, Xiaoyang Zeng, and Yibo Fan
- Abstract summary: We propose to use three hyperprior decoders to separate the decoding process of the mixed parameters in discrete Gaussian mixture likelihoods.
The proposed method achieves on average 3.36% BD-rate reduction compared with state-of-the-art approach.
- Score: 19.14246055282486
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Learned image compression techniques have achieved considerable development
in recent years. In this paper, we find that the performance bottleneck lies in
the use of a single hyperprior decoder, in which case the ternary Gaussian
model collapses to a binary one. To solve this, we propose to use three
hyperprior decoders to separate the decoding process of the mixed parameters in
discrete Gaussian mixture likelihoods, achieving more accurate parameters
estimation. Experimental results demonstrate the proposed method optimized by
MS-SSIM achieves on average 3.36% BD-rate reduction compared with
state-of-the-art approach. The contribution of the proposed method to the
coding time and FLOPs is negligible.
Related papers
- CompGS: Efficient 3D Scene Representation via Compressed Gaussian Splatting [68.94594215660473]
We propose an efficient 3D scene representation, named Compressed Gaussian Splatting (CompGS)
We exploit a small set of anchor primitives for prediction, allowing the majority of primitives to be encapsulated into highly compact residual forms.
Experimental results show that the proposed CompGS significantly outperforms existing methods, achieving superior compactness in 3D scene representation without compromising model accuracy and rendering quality.
arXiv Detail & Related papers (2024-04-15T04:50:39Z) - Fast Semisupervised Unmixing Using Nonconvex Optimization [80.11512905623417]
We introduce a novel convex convex model for semi/library-based unmixing.
We demonstrate the efficacy of Alternating Methods of sparse unsupervised unmixing.
arXiv Detail & Related papers (2024-01-23T10:07:41Z) - GPS-Gaussian: Generalizable Pixel-wise 3D Gaussian Splatting for Real-time Human Novel View Synthesis [70.24111297192057]
We present a new approach, termed GPS-Gaussian, for synthesizing novel views of a character in a real-time manner.
The proposed method enables 2K-resolution rendering under a sparse-view camera setting.
arXiv Detail & Related papers (2023-12-04T18:59:55Z) - An Optimization-based Deep Equilibrium Model for Hyperspectral Image
Deconvolution with Convergence Guarantees [71.57324258813675]
We propose a novel methodology for addressing the hyperspectral image deconvolution problem.
A new optimization problem is formulated, leveraging a learnable regularizer in the form of a neural network.
The derived iterative solver is then expressed as a fixed-point calculation problem within the Deep Equilibrium framework.
arXiv Detail & Related papers (2023-06-10T08:25:16Z) - Poisson-Gaussian Holographic Phase Retrieval with Score-based Image
Prior [19.231581775644617]
We propose a new algorithm called "AWFS" that uses the accelerated Wirtinger flow (AWF) with a score function as generative prior.
We calculate the gradient of the log-likelihood function for PR and determine the Lipschitz constant.
We provide theoretical analysis that establishes a critical-point convergence guarantee for the proposed algorithm.
arXiv Detail & Related papers (2023-05-12T18:08:47Z) - Learned Image Compression with Generalized Octave Convolution and
Cross-Resolution Parameter Estimation [5.238765582868391]
We propose a learned multi-resolution image compression framework, which exploits octave convolutions to factorize the latent representations into the high-resolution (HR) and low-resolution (LR) parts.
Experimental results show that our method separately reduces the decoding time by approximately 73.35 % and 93.44 % compared with that of state-of-the-art learned image compression methods.
arXiv Detail & Related papers (2022-09-07T08:21:52Z) - The split Gibbs sampler revisited: improvements to its algorithmic
structure and augmented target distribution [1.1279808969568252]
Current state-of-the-art methods often address these difficulties by replacing the posterior density with a smooth approximation.
An alternative approach is based on data augmentation and relaxation, where auxiliary variables are introduced in order to construct an approximate augmented posterior distribution.
This paper proposes a new accelerated proximal MCMC method called latent space SK-ROCK, which tightly combines the benefits of the two strategies.
arXiv Detail & Related papers (2022-06-28T11:21:41Z) - Lossy Compression with Gaussian Diffusion [28.930398810600504]
We describe a novel lossy compression approach called DiffC which is based on unconditional diffusion generative models.
We implement a proof of concept and find that it works surprisingly well despite the lack of an encoder transform.
We show that a flow-based reconstruction achieves a 3 dB gain over ancestral sampling at highs.
arXiv Detail & Related papers (2022-06-17T16:46:31Z) - Implicit Neural Representations for Image Compression [103.78615661013623]
Implicit Neural Representations (INRs) have gained attention as a novel and effective representation for various data types.
We propose the first comprehensive compression pipeline based on INRs including quantization, quantization-aware retraining and entropy coding.
We find that our approach to source compression with INRs vastly outperforms similar prior work.
arXiv Detail & Related papers (2021-12-08T13:02:53Z) - Plug-And-Play Learned Gaussian-mixture Approximate Message Passing [71.74028918819046]
We propose a plug-and-play compressed sensing (CS) recovery algorithm suitable for any i.i.d. source prior.
Our algorithm builds upon Borgerding's learned AMP (LAMP), yet significantly improves it by adopting a universal denoising function within the algorithm.
Numerical evaluation shows that the L-GM-AMP algorithm achieves state-of-the-art performance without any knowledge of the source prior.
arXiv Detail & Related papers (2020-11-18T16:40:45Z) - Improving Inference for Neural Image Compression [31.999462074510305]
State-of-the-art methods build on hierarchical variational autoencoders to predict a compressible latent representation of each data point.
We identify three approximation gaps which limit performance in the conventional approach.
We propose remedies for each of these three limitations based on ideas related to iterative inference.
arXiv Detail & Related papers (2020-06-07T19:26:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.