論文の概要: Learning to Detect Open Carry and Concealed Object with 77GHz Radar
- arxiv url: http://arxiv.org/abs/2111.00551v1
- Date: Sun, 31 Oct 2021 17:33:28 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-02 16:53:39.225031
- Title: Learning to Detect Open Carry and Concealed Object with 77GHz Radar
- Title(参考訳): 77ghzレーダを用いた開放搬送・隠蔽物体検出の学習
- Authors: Xiangyu Gao, Hui Liu, Sumit Roy, Guanbin Xing, Ali Alansari, Youchen
Luo
- Abstract要約: 本稿では,搬送物体検出問題に対して,77GHzmm波レーダを用いた比較的未探索領域に着目した。
提案システムでは, ノートパソコン, 電話, ナイフの3種類の物体を, 空き荷物や隠蔽ケースでリアルタイムに検出できる。
このシステムは77GHzレーダーによる搬送物体の検出を目的とした、他の将来の研究のための最初のベースラインとなる。
- 参考スコア(独自算出の注目度): 7.608789301874509
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Detecting harmful carried objects plays a key role in intelligent
surveillance systems and has widespread applications, for example, in airport
security. In this paper, we focus on the relatively unexplored area of using
low-cost 77GHz mmWave radar for the carried objects detection problem. The
proposed system is capable of real-time detecting three classes of objects -
laptop, phone, and knife - under open carry and concealed cases where objects
are hidden with clothes or bags. This capability is achieved by initial signal
processing for localization and generating range-azimuth-elevation image cubes,
followed by a deep learning-based prediction network and a multi-shot
post-processing module for detecting objects. Extensive experiments for
validating the system performance on detecting open carry and concealed objects
have been presented with a self-built radar-camera testbed and dataset.
Additionally, the influence of different input, factors, and parameters on
system performance is analyzed, providing an intuitive understanding of the
system. This system would be the very first baseline for other future works
aiming to detect carried objects using 77GHz radar.
- Abstract(参考訳): 有害な搬送物の検出は、インテリジェントな監視システムにおいて重要な役割を担い、例えば空港のセキュリティにおいて広く応用されている。
本稿では,搬送物体検出問題に対して,77GHzmm波レーダを用いた比較的未探索領域に着目した。
提案システムは,物が衣服やバッグで隠された状態で,包丁,電話,ナイフの3つのクラスをリアルタイムで検出することができる。
この機能は、画像キューブのローカライズと生成のための初期信号処理と、ディープラーニングに基づく予測ネットワークとオブジェクトを検出するマルチショット後処理モジュールによって実現される。
自作のレーダーカメラテストベッドとデータセットを用いて,オープンキャリーおよび隠蔽物体の検出におけるシステム性能の検証実験を行った。
さらに、異なる入力、要因、パラメータがシステム性能に与える影響を分析し、システムの直感的な理解を提供する。
このシステムは77GHzレーダーによる搬送物体の検出を目的とした、他の将来の研究のための最初のベースラインとなる。
関連論文リスト
- UAV-Based Human Body Detector Selection and Fusion for Geolocated Saliency Map Generation [0.2499907423888049]
無人航空機(UAV)を用いた探索・救助など多くの応用分野において、ソフトリアルタイムの異なるクラスの物体を確実に検出・位置決めする問題は不可欠である。
本研究は、システムコンテキストの視覚に基づく検出器の選択、割り当て、実行の相補的な問題に対処する。
検出結果は,新しいセンサモデルを利用して,正と負の両方の観測を視覚ベースで検出する,有意な位置の地図を構築する手法を用いて融合される。
論文 参考訳(メタデータ) (2024-08-29T13:00:37Z) - Multi-Object Tracking based on Imaging Radar 3D Object Detection [0.13499500088995461]
本稿では,古典的追跡アルゴリズムを用いて,周囲の交通参加者を追跡する手法を提案する。
学習に基づく物体検出器はライダーとカメラのデータに適切に対応し、学習に基づく物体検出器は標準のレーダーデータ入力により劣っていることが示されている。
レーダセンサ技術の改良により、レーダの物体検出性能は大幅に改善されたが、レーダ点雲の広さによりライダーセンサに制限されている。
追跡アルゴリズムは、一貫したトラックを生成しながら、限られた検出品質を克服しなければならない。
論文 参考訳(メタデータ) (2024-06-03T05:46:23Z) - Leveraging Self-Supervised Instance Contrastive Learning for Radar
Object Detection [7.728838099011661]
本稿では,レーダ物体検出装置を事前訓練する際,RCLを例に紹介する。
我々は、より少ないデータで学習するために、物体検出器のバックボーン、頭、首を事前訓練することを目指している。
論文 参考訳(メタデータ) (2024-02-13T12:53:33Z) - AdvGPS: Adversarial GPS for Multi-Agent Perception Attack [47.59938285740803]
本研究は,マルチエージェント認識システムにおいて,特定のGPS信号が容易に誤認できるかどうかを考察する。
我々は,システム内の個々のエージェントに対してステルス性を持つ逆GPS信号を生成可能なtextscAdvGPSを紹介する。
OPV2Vデータセットに対する実験により、これらの攻撃が最先端の手法の性能を著しく損なうことを示した。
論文 参考訳(メタデータ) (2024-01-30T23:13:41Z) - Joint object detection and re-identification for 3D obstacle
multi-camera systems [47.87501281561605]
本研究は,カメラとライダー情報を用いた物体検出ネットワークに新たな改良を加えたものである。
同じ車両内の隣のカメラにまたがって物体を再識別する作業のために、追加のブランチが組み込まれている。
その結果,従来の非最大抑圧(NMS)技術よりも,この手法が優れていることが示された。
論文 参考訳(メタデータ) (2023-10-09T15:16:35Z) - SalienDet: A Saliency-based Feature Enhancement Algorithm for Object
Detection for Autonomous Driving [160.57870373052577]
未知の物体を検出するために,サリエンデット法(SalienDet)を提案する。
我々のSaienDetは、オブジェクトの提案生成のための画像機能を強化するために、サリエンシに基づくアルゴリズムを利用している。
オープンワールド検出を実現するためのトレーニングサンプルセットにおいて、未知のオブジェクトをすべてのオブジェクトと区別するためのデータセットレザベリングアプローチを設計する。
論文 参考訳(メタデータ) (2023-05-11T16:19:44Z) - Drone Detection and Tracking in Real-Time by Fusion of Different Sensing
Modalities [66.4525391417921]
マルチセンサ・ドローン検知システムの設計と評価を行う。
われわれのソリューションは、魚眼カメラを統合し、空の広い部分を監視し、他のカメラを興味ある対象に向けて操縦する。
このサーマルカメラは、たとえこのカメラが解像度が低いとしても、ビデオカメラと同じくらい実現可能なソリューションであることが示されている。
論文 参考訳(メタデータ) (2022-07-05T10:00:58Z) - RadArnomaly: Protecting Radar Systems from Data Manipulation Attacks [40.736632681576786]
本稿では,レーダシステムデータストリーム中の異常を検出するためのディープラーニングに基づく手法を提案する。
提案手法により,データストリーム内のクリティカルフィールドの不正な操作を検出することができる。
実験では,様々なデータストリーム操作攻撃に対して高い検出精度を示す。
論文 参考訳(メタデータ) (2021-06-13T19:16:37Z) - Online Monitoring of Object Detection Performance During Deployment [6.166295570030645]
入力フレームのスライディングウィンドウ上での平均平均精度(mAP)を予測し,対象検出器の性能を監視するカスケードニューラルネットワークを提案する。
我々は、自律走行データセットと物体検出装置の異なる組み合わせを用いて、提案手法の評価を行った。
論文 参考訳(メタデータ) (2020-11-16T07:01:43Z) - Perceiving Traffic from Aerial Images [86.994032967469]
本研究では,空中画像中の物体を検出するために,バタフライ検出器と呼ばれる物体検出手法を提案する。
UAVDT(UAVDT)とVisDrone 2019(VisDrone 2019)の2つのUAVデータセット上でButterfly Detectorを評価し、従来の最先端の手法よりも高速に動作し、かつリアルタイムに動作可能であることを示す。
論文 参考訳(メタデータ) (2020-09-16T11:37:43Z) - RadarNet: Exploiting Radar for Robust Perception of Dynamic Objects [73.80316195652493]
我々は、自動運転車の文脈における認識のためにRadarを利用する問題に取り組む。
我々は、LiDARとRadarの両方のセンサーを知覚に利用した新しいソリューションを提案する。
RadarNetと呼ばれる我々のアプローチは、ボクセルベースの早期核融合と注意に基づく後期核融合を特徴としている。
論文 参考訳(メタデータ) (2020-07-28T17:15:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。