論文の概要: FedFm: Towards a Robust Federated Learning Approach For Fault Mitigation
at the Edge Nodes
- arxiv url: http://arxiv.org/abs/2111.01074v1
- Date: Mon, 1 Nov 2021 16:35:00 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-02 16:20:05.349823
- Title: FedFm: Towards a Robust Federated Learning Approach For Fault Mitigation
at the Edge Nodes
- Title(参考訳): FedFm:エッジノードにおける障害軽減のためのロバストなフェデレーション学習アプローチを目指して
- Authors: Manupriya Gupta, Pavas Goyal, Rohit Verma, Rajeev Shorey, Huzur Saran
- Abstract要約: フェデレーテッド・ラーニングは「データからモデルへ」という規範から「モデルからデータへ」へと逸脱する
本稿では、まず、FLモデルにおけるエッジデバイス数の影響を分析し、モデルに寄与する最適なデバイス数を選択するための戦略を提供する。
選択したデバイスが失敗した場合,エッジエコシステムがどのように振る舞うかを観察し,堅牢なフェデレート学習技術を保証するための緩和戦略を提供する。
- 参考スコア(独自算出の注目度): 1.9645939141861544
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated Learning deviates from the norm of "send data to model" to "send
model to data". When used in an edge ecosystem, numerous heterogeneous edge
devices collecting data through different means and connected through different
network channels get involved in the training process. Failure of edge devices
in such an ecosystem due to device fault or network issues is highly likely. In
this paper, we first analyse the impact of the number of edge devices on an FL
model and provide a strategy to select an optimal number of devices that would
contribute to the model. We observe how the edge ecosystem behaves when the
selected devices fail and provide a mitigation strategy to ensure a robust
Federated Learning technique.
- Abstract(参考訳): フェデレーション学習は、"データからモデルへのsend"から"モデルからデータへのsend"へと変化します。
エッジエコシステムで使用すると、さまざまな手段でデータを収集し、異なるネットワークチャネルを介して接続する多数の異種エッジデバイスがトレーニングプロセスに関与します。
このようなエコシステムにおけるエッジデバイスの障害は、デバイス障害やネットワーク上の問題によるものだ。
本稿では、まず、FLモデルにおけるエッジデバイス数の影響を分析し、モデルに寄与する最適なデバイス数を選択するための戦略を提供する。
選択したデバイスが失敗した場合,エッジエコシステムがどのように振る舞うかを観察し,堅牢なフェデレート学習技術を保証するための緩和戦略を提供する。
関連論文リスト
- Heterogeneity-Aware Resource Allocation and Topology Design for Hierarchical Federated Edge Learning [9.900317349372383]
Federated Learning (FL)は、モバイルデバイス上で機械学習モデルをトレーニングするためのプライバシー保護フレームワークを提供する。
従来のFLアルゴリズム、例えばFedAvgはこれらのデバイスに重い通信負荷を課す。
エッジデバイスをエッジサーバに接続し,エッジサーバをピアツーピア(P2P)エッジバックホールを介して相互接続する2層HFELシステムを提案する。
我々の目標は、戦略的資源配分とトポロジ設計により、HFELシステムの訓練効率を向上させることである。
論文 参考訳(メタデータ) (2024-09-29T01:48:04Z) - Federated Learning and Meta Learning: Approaches, Applications, and
Directions [94.68423258028285]
本稿では,FL,メタラーニング,フェデレーションメタラーニング(FedMeta)について概観する。
他のチュートリアルと異なり、私たちの目標はFL、メタラーニング、FedMetaの方法論をどのように設計、最適化、進化させ、無線ネットワーク上で応用するかを探ることです。
論文 参考訳(メタデータ) (2022-10-24T10:59:29Z) - Online Data Selection for Federated Learning with Limited Storage [53.46789303416799]
ネットワークデバイス間での分散機械学習を実現するために、フェデレートラーニング(FL)が提案されている。
デバイス上のストレージがFLの性能に与える影響はまだ調査されていない。
本研究では,デバイス上のストレージを限定したFLのオンラインデータ選択について検討する。
論文 参考訳(メタデータ) (2022-09-01T03:27:33Z) - FedHiSyn: A Hierarchical Synchronous Federated Learning Framework for
Resource and Data Heterogeneity [56.82825745165945]
フェデレートラーニング(FL)は、データプライバシを保護するために複数のデバイスに格納された分散生データを共有することなく、グローバルモデルのトレーニングを可能にする。
本稿では,階層型同期FLフレームワークであるFedHiSynを提案し,トラグラー効果や時代遅れモデルの問題に対処する。
提案手法は,MNIST,EMNIST,CIFAR10,CIFAR100のデータセットと多種多様なデバイス設定に基づいて評価する。
論文 参考訳(メタデータ) (2022-06-21T17:23:06Z) - Multi-Edge Server-Assisted Dynamic Federated Learning with an Optimized
Floating Aggregation Point [51.47520726446029]
協調エッジ学習(CE-FL)は、分散機械学習アーキテクチャである。
CE-FLの過程をモデル化し,分析訓練を行った。
実世界のテストベッドから収集したデータを用いて,本フレームワークの有効性を示す。
論文 参考訳(メタデータ) (2022-03-26T00:41:57Z) - Computational Intelligence and Deep Learning for Next-Generation
Edge-Enabled Industrial IoT [51.68933585002123]
エッジ対応産業用IoTネットワークにおける計算知能とディープラーニング(DL)の展開方法について検討する。
本稿では,新しいマルチエグジットベースフェデレーションエッジ学習(ME-FEEL)フレームワークを提案する。
特に、提案されたME-FEELは、非常に限られたリソースを持つ産業用IoTネットワークにおいて、最大32.7%の精度を達成することができる。
論文 参考訳(メタデータ) (2021-10-28T08:14:57Z) - Spatio-Temporal Federated Learning for Massive Wireless Edge Networks [23.389249751372393]
エッジサーバと多数のモバイルデバイス(クライアント)は、モバイルデバイスが収集した膨大なデータをエッジサーバに転送することなく、グローバルモデルを共同で学習する。
提案手法は,STFLに参加する予定の様々なモバイルデバイスからの学習更新の空間的および時間的相関を利用している。
収束性能を用いてSTFLの学習能力を研究するために,STFLの分析フレームワークを提案する。
論文 参考訳(メタデータ) (2021-10-27T16:46:45Z) - Segmented Federated Learning for Adaptive Intrusion Detection System [0.6445605125467573]
サイバー攻撃は組織に大きな財政的利益をもたらし、評判を害する。
現在のネットワーク侵入検知システム(NIDS)は不十分なようだ。
より効率的なNIDSのためのSegmented-Federated Learning(Segmented-FL)学習手法を提案する。
論文 参考訳(メタデータ) (2021-07-02T07:47:05Z) - Adaptive Dynamic Pruning for Non-IID Federated Learning [3.8666113275834335]
フェデレートラーニング(FL)は、データセキュリティとプライバシを犠牲にすることなく機械学習モデルをトレーニングする新たなパラダイムとして登場した。
FLシステムにおけるエッジデバイスに対する適応型プルーニング方式を提案し,非IIDデータセットの推論高速化にデータセット対応動的プルーニングを適用した。
論文 参考訳(メタデータ) (2021-06-13T05:27:43Z) - Distributed Learning in Wireless Networks: Recent Progress and Future
Challenges [170.35951727508225]
次世代のワイヤレスネットワークは、エッジデバイスが収集するさまざまな種類のデータを分析する多くの機械学習ツールやアプリケーションを可能にする。
エッジデバイスが生データ交換なしでMLモデルを協調的にトレーニングできるようにする手段として,分散学習と推論技術が提案されている。
本稿では,ワイヤレスエッジネットワーク上で分散学習を効率的に効果的に展開する方法を包括的に研究する。
論文 参考訳(メタデータ) (2021-04-05T20:57:56Z) - Reconfigurable Intelligent Surface Enabled Federated Learning: A Unified
Communication-Learning Design Approach [30.1988598440727]
我々は,デバイス選択,無線トランシーバ設計,RIS構成を協調的に最適化する統一的なコミュニケーション学習最適化問題を開発した。
数値実験により,提案手法は最先端の手法と比較して,学習精度が大幅に向上することが示された。
論文 参考訳(メタデータ) (2020-11-20T08:54:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。