Diverse Distributions of Self-Supervised Tasks for Meta-Learning in NLP
- URL: http://arxiv.org/abs/2111.01322v1
- Date: Tue, 2 Nov 2021 01:50:09 GMT
- Title: Diverse Distributions of Self-Supervised Tasks for Meta-Learning in NLP
- Authors: Trapit Bansal, Karthick Gunasekaran, Tong Wang, Tsendsuren Munkhdalai,
Andrew McCallum
- Abstract summary: We aim to provide task distributions for meta-learning by considering self-supervised tasks automatically proposed from unlabeled text.
Our analysis shows that all these factors meaningfully alter the task distribution, some inducing significant improvements in downstream few-shot accuracy of the meta-learned models.
- Score: 39.457091182683406
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Meta-learning considers the problem of learning an efficient learning process
that can leverage its past experience to accurately solve new tasks. However,
the efficacy of meta-learning crucially depends on the distribution of tasks
available for training, and this is often assumed to be known a priori or
constructed from limited supervised datasets. In this work, we aim to provide
task distributions for meta-learning by considering self-supervised tasks
automatically proposed from unlabeled text, to enable large-scale meta-learning
in NLP. We design multiple distributions of self-supervised tasks by
considering important aspects of task diversity, difficulty, type, domain, and
curriculum, and investigate how they affect meta-learning performance. Our
analysis shows that all these factors meaningfully alter the task distribution,
some inducing significant improvements in downstream few-shot accuracy of the
meta-learned models. Empirically, results on 20 downstream tasks show
significant improvements in few-shot learning -- adding up to +4.2% absolute
accuracy (on average) to the previous unsupervised meta-learning method, and
perform comparably to supervised methods on the FewRel 2.0 benchmark.
Related papers
- Meta-Learning with Heterogeneous Tasks [42.695853959923625]
Heterogeneous Tasks Robust Meta-learning (HeTRoM)
An efficient iterative optimization algorithm based on bi-level optimization.
Results demonstrate that our method provides flexibility, enabling users to adapt to diverse task settings.
arXiv Detail & Related papers (2024-10-24T16:32:23Z) - Task-Distributionally Robust Data-Free Meta-Learning [99.56612787882334]
Data-Free Meta-Learning (DFML) aims to efficiently learn new tasks by leveraging multiple pre-trained models without requiring their original training data.
For the first time, we reveal two major challenges hindering their practical deployments: Task-Distribution Shift ( TDS) and Task-Distribution Corruption (TDC)
arXiv Detail & Related papers (2023-11-23T15:46:54Z) - Towards Task Sampler Learning for Meta-Learning [37.02030832662183]
Meta-learning aims to learn general knowledge with diverse training tasks conducted from limited data, and then transfer it to new tasks.
It is commonly believed that increasing task diversity will enhance the generalization ability of meta-learning models.
This paper challenges this view through empirical and theoretical analysis.
arXiv Detail & Related papers (2023-07-18T01:53:18Z) - Algorithm Design for Online Meta-Learning with Task Boundary Detection [63.284263611646]
We propose a novel algorithm for task-agnostic online meta-learning in non-stationary environments.
We first propose two simple but effective detection mechanisms of task switches and distribution shift.
We show that a sublinear task-averaged regret can be achieved for our algorithm under mild conditions.
arXiv Detail & Related papers (2023-02-02T04:02:49Z) - Uncertainty-Aware Meta-Learning for Multimodal Task Distributions [3.7470451129384825]
We present UnLiMiTD (uncertainty-aware meta-learning for multimodal task distributions)
We take a probabilistic perspective and train a parametric, tuneable distribution over tasks on the meta-dataset.
We demonstrate that UnLiMiTD's predictions compare favorably to, and outperform in most cases, the standard baselines.
arXiv Detail & Related papers (2022-10-04T20:02:25Z) - On the Effectiveness of Fine-tuning Versus Meta-reinforcement Learning [71.55412580325743]
We show that multi-task pretraining with fine-tuning on new tasks performs equally as well, or better, than meta-pretraining with meta test-time adaptation.
This is encouraging for future research, as multi-task pretraining tends to be simpler and computationally cheaper than meta-RL.
arXiv Detail & Related papers (2022-06-07T13:24:00Z) - The Effect of Diversity in Meta-Learning [79.56118674435844]
Few-shot learning aims to learn representations that can tackle novel tasks given a small number of examples.
Recent studies show that task distribution plays a vital role in the model's performance.
We study different task distributions on a myriad of models and datasets to evaluate the effect of task diversity on meta-learning algorithms.
arXiv Detail & Related papers (2022-01-27T19:39:07Z) - Meta-learning with an Adaptive Task Scheduler [93.63502984214918]
Existing meta-learning algorithms randomly sample meta-training tasks with a uniform probability.
It is likely that tasks are detrimental with noise or imbalanced given a limited number of meta-training tasks.
We propose an adaptive task scheduler (ATS) for the meta-training process.
arXiv Detail & Related papers (2021-10-26T22:16:35Z) - A Channel Coding Benchmark for Meta-Learning [21.2424398453955]
Several important issues in meta-learning have proven hard to study thus far.
We propose the channel coding problem as a benchmark for meta-learning.
Going forward, this benchmark provides a tool for the community to study the capabilities and limitations of meta-learning.
arXiv Detail & Related papers (2021-07-15T19:37:43Z) - Lessons from Chasing Few-Shot Learning Benchmarks: Rethinking the
Evaluation of Meta-Learning Methods [9.821362920940631]
We introduce a simple baseline for meta-learning, FIX-ML.
We explore two possible goals of meta-learning: to develop methods that generalize (i) to the same task distribution that generates the training set (in-distribution), or (ii) to new, unseen task distributions (out-of-distribution)
Our results highlight that in order to reason about progress in this space, it is necessary to provide a clearer description of the goals of meta-learning, and to develop more appropriate evaluation strategies.
arXiv Detail & Related papers (2021-02-23T05:34:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.