Real-Time Forecasting of Dockless Scooter-Sharing Demand: A
Spatio-Temporal Multi-Graph Transformer Approach
- URL: http://arxiv.org/abs/2111.01355v3
- Date: Tue, 18 Oct 2022 01:24:56 GMT
- Title: Real-Time Forecasting of Dockless Scooter-Sharing Demand: A
Spatio-Temporal Multi-Graph Transformer Approach
- Authors: Yiming Xu, Xilei Zhao, Xiaojian Zhang, Mudit Paliwal
- Abstract summary: This paper proposes a novel deep learning architecture named S-Temporal Multi-Graph Transformer (S-TMGT) to forecast real-time dockless scooter-sharing demand.
The proposed model can help the micromobility operators develop optimal vehicle rebalancing schemes and guide cities to better manage dockless scooter-sharing operations.
- Score: 5.6973480878880824
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Accurately forecasting the real-time travel demand for dockless
scooter-sharing is crucial for the planning and operations of transportation
systems. Deep learning models provide researchers with powerful tools to
achieve this task, but research in this area is still lacking. This paper thus
proposes a novel deep learning architecture named Spatio-Temporal Multi-Graph
Transformer (STMGT) to forecast the real-time spatiotemporal dockless
scooter-sharing demand. The proposed model uses a graph convolutional network
(GCN) based on adjacency graph, functional similarity graph, demographic
similarity graph, and transportation supply similarity graph to attach spatial
dependency to temporal input (i.e., historical demand). The output of GCN is
subsequently processed with weather condition information by the Transformer to
capture temporal dependency. Then, a convolutional layer is used to generate
the final prediction. The proposed model is evaluated for two real-world case
studies in Washington, D.C. and Austin, TX, respectively, and the results show
that for both case studies, STMGT significantly outperforms all the selected
benchmark models, and the most important model component is the weather
information. The proposed model can help the micromobility operators develop
optimal vehicle rebalancing schemes and guide cities to better manage dockless
scooter-sharing operations.
Related papers
- Planning with Adaptive World Models for Autonomous Driving [50.4439896514353]
Motion planners (MPs) are crucial for safe navigation in complex urban environments.
nuPlan, a recently released MP benchmark, addresses this limitation by augmenting real-world driving logs with closed-loop simulation logic.
We present AdaptiveDriver, a model-predictive control (MPC) based planner that unrolls different world models conditioned on BehaviorNet's predictions.
arXiv Detail & Related papers (2024-06-15T18:53:45Z) - Hybrid Transformer and Spatial-Temporal Self-Supervised Learning for
Long-term Traffic Prediction [1.8531577178922987]
We propose a model that combines hybrid Transformer and self-supervised learning.
The model enhances its adaptive data augmentation by applying data augmentation techniques at the sequence-level of the traffic.
We design two self-supervised learning tasks to model the temporal and spatial dependencies, thereby improving the accuracy and ability of the model.
arXiv Detail & Related papers (2024-01-29T06:17:23Z) - Rethinking Urban Mobility Prediction: A Super-Multivariate Time Series
Forecasting Approach [71.67506068703314]
Long-term urban mobility predictions play a crucial role in the effective management of urban facilities and services.
Traditionally, urban mobility data has been structured as videos, treating longitude and latitude as fundamental pixels.
In our research, we introduce a fresh perspective on urban mobility prediction.
Instead of oversimplifying urban mobility data as traditional video data, we regard it as a complex time series.
arXiv Detail & Related papers (2023-12-04T07:39:05Z) - ICN: Interactive Convolutional Network for Forecasting Travel Demand of
Shared Micromobility [5.6973480878880824]
This paper proposes a deep learning model named Interactive Convolutional Network (ICN) to forecast travel demand for shared micromobility.
The proposed model is evaluated for two real-world case studies in Chicago, IL, and Austin, TX.
arXiv Detail & Related papers (2023-06-24T08:08:04Z) - GC-GRU-N for Traffic Prediction using Loop Detector Data [5.735035463793008]
We use Seattle loop detector data aggregated over 15 minutes and reframe the problem through space time.
The model ranked second with the fastest inference time and a very close performance to first place (Transformers)
arXiv Detail & Related papers (2022-11-13T06:32:28Z) - Automated Dilated Spatio-Temporal Synchronous Graph Modeling for Traffic
Prediction [1.6449390849183363]
We propose an automated dilated-temporal synchronous graph network prediction named Auto-DSTS for traffic prediction.
Specifically, we propose an automated dilated-temporal-temporal graph (Auto-DSTS) module to capture the short-term and long-term-temporal correlations.
Our model can achieve about 10% improvements compared with the state-of-art methods.
arXiv Detail & Related papers (2022-07-22T00:50:39Z) - A Baselined Gated Attention Recurrent Network for Request Prediction in
Ridesharing [1.0312968200748118]
Ridesharing has received global popularity due to its convenience and cost efficiency for both drivers and passengers.
The goal of the RSODP (Origin-Destination Prediction for Ridesharing) problem is to predict the future ridesharing requests and provide schedules for vehicles ahead of time.
Most of existing prediction models utilise Deep Learning, however they fail to effectively consider both spatial and temporal dynamics.
arXiv Detail & Related papers (2022-07-11T08:41:24Z) - Spatio-temporal Modeling for Large-scale Vehicular Networks Using Graph
Convolutional Networks [110.80088437391379]
A graph-based framework called SMART is proposed to model and keep track of the statistics of vehicle-to-temporal (V2I) communication latency across a large geographical area.
We develop a graph reconstruction-based approach using a graph convolutional network integrated with a deep Q-networks algorithm.
Our results show that the proposed method can significantly improve both the accuracy and efficiency for modeling and the latency performance of large vehicular networks.
arXiv Detail & Related papers (2021-03-13T06:56:29Z) - Constructing Geographic and Long-term Temporal Graph for Traffic
Forecasting [88.5550074808201]
We propose Geographic and Long term Temporal Graph Convolutional Recurrent Neural Network (GLT-GCRNN) for traffic forecasting.
In this work, we propose a novel framework for traffic forecasting that learns the rich interactions between roads sharing similar geographic or longterm temporal patterns.
arXiv Detail & Related papers (2020-04-23T03:50:46Z) - Physical-Virtual Collaboration Modeling for Intra-and Inter-Station
Metro Ridership Prediction [116.66657468425645]
We propose a unified Physical-Virtual Collaboration Graph Network (PVCGN), which can effectively learn the complex ridership patterns from the tailor-designed graphs.
Specifically, a physical graph is directly built based on the realistic topology of the studied metro system.
A similarity graph and a correlation graph are built with virtual topologies under the guidance of the inter-station passenger flow similarity and correlation.
arXiv Detail & Related papers (2020-01-14T16:47:54Z) - Spatial-Temporal Transformer Networks for Traffic Flow Forecasting [74.76852538940746]
We propose a novel paradigm of Spatial-Temporal Transformer Networks (STTNs) to improve the accuracy of long-term traffic forecasting.
Specifically, we present a new variant of graph neural networks, named spatial transformer, by dynamically modeling directed spatial dependencies.
The proposed model enables fast and scalable training over a long range spatial-temporal dependencies.
arXiv Detail & Related papers (2020-01-09T10:21:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.