Solving Partial Differential Equations with Point Source Based on
Physics-Informed Neural Networks
- URL: http://arxiv.org/abs/2111.01394v1
- Date: Tue, 2 Nov 2021 06:39:54 GMT
- Title: Solving Partial Differential Equations with Point Source Based on
Physics-Informed Neural Networks
- Authors: Xiang Huang, Hongsheng Liu, Beiji Shi, Zidong Wang, Kang Yang, Yang
Li, Bingya Weng, Min Wang, Haotian Chu, Jing Zhou, Fan Yu, Bei Hua, Lei Chen,
Bin Dong
- Abstract summary: In recent years, deep learning technology has been used to solve partial differential equations (PDEs)
We propose a universal solution to tackle this problem with three novel techniques.
We evaluate the proposed method with three representative PDEs, and the experimental results show that our method outperforms existing deep learning-based methods with respect to the accuracy, the efficiency and the versatility.
- Score: 33.18757454787517
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In recent years, deep learning technology has been used to solve partial
differential equations (PDEs), among which the physics-informed neural networks
(PINNs) emerges to be a promising method for solving both forward and inverse
PDE problems. PDEs with a point source that is expressed as a Dirac delta
function in the governing equations are mathematical models of many physical
processes. However, they cannot be solved directly by conventional PINNs method
due to the singularity brought by the Dirac delta function. We propose a
universal solution to tackle this problem with three novel techniques. Firstly
the Dirac delta function is modeled as a continuous probability density
function to eliminate the singularity; secondly a lower bound constrained
uncertainty weighting algorithm is proposed to balance the PINNs losses between
point source area and other areas; and thirdly a multi-scale deep neural
network with periodic activation function is used to improve the accuracy and
convergence speed of the PINNs method. We evaluate the proposed method with
three representative PDEs, and the experimental results show that our method
outperforms existing deep learning-based methods with respect to the accuracy,
the efficiency and the versatility.
Related papers
- A Physics-driven GraphSAGE Method for Physical Process Simulations
Described by Partial Differential Equations [2.1217718037013635]
A physics-driven GraphSAGE approach is presented to solve problems governed by irregular PDEs.
A distance-related edge feature and a feature mapping strategy are devised to help training and convergence.
The robust PDE surrogate model for heat conduction problems parameterized by the Gaussian singularity random field source is successfully established.
arXiv Detail & Related papers (2024-03-13T14:25:15Z) - An Extreme Learning Machine-Based Method for Computational PDEs in
Higher Dimensions [1.2981626828414923]
We present two effective methods for solving high-dimensional partial differential equations (PDE) based on randomized neural networks.
We present ample numerical simulations for a number of high-dimensional linear/nonlinear stationary/dynamic PDEs to demonstrate their performance.
arXiv Detail & Related papers (2023-09-13T15:59:02Z) - Global Convergence of Deep Galerkin and PINNs Methods for Solving
Partial Differential Equations [0.0]
A variety of deep learning methods have been developed to try and solve high-dimensional PDEs by approximating the solution using a neural network.
We prove global convergence for one of the commonly-used deep learning algorithms for solving PDEs, the Deep Galerkin MethodDGM.
arXiv Detail & Related papers (2023-05-10T09:20:11Z) - A Stable and Scalable Method for Solving Initial Value PDEs with Neural
Networks [52.5899851000193]
We develop an ODE based IVP solver which prevents the network from getting ill-conditioned and runs in time linear in the number of parameters.
We show that current methods based on this approach suffer from two key issues.
First, following the ODE produces an uncontrolled growth in the conditioning of the problem, ultimately leading to unacceptably large numerical errors.
arXiv Detail & Related papers (2023-04-28T17:28:18Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
Physics-informed neural networks (PINNs) have effectively been demonstrated in solving forward and inverse differential equation problems.
PINNs are trapped in training failures when the target functions to be approximated exhibit high-frequency or multi-scale features.
In this paper, we propose to employ implicit gradient descent (ISGD) method to train PINNs for improving the stability of training process.
arXiv Detail & Related papers (2023-03-03T08:17:47Z) - Fully probabilistic deep models for forward and inverse problems in
parametric PDEs [1.9599274203282304]
We introduce a physics-driven deep latent variable model (PDDLVM) to learn simultaneously parameter-to-solution (forward) and solution-to- parameter (inverse) maps of PDEs.
The proposed framework can be easily extended to seamlessly integrate observed data to solve inverse problems and to build generative models.
We demonstrate the efficiency and robustness of our method on finite element discretized parametric PDE problems.
arXiv Detail & Related papers (2022-08-09T15:40:53Z) - A mixed formulation for physics-informed neural networks as a potential
solver for engineering problems in heterogeneous domains: comparison with
finite element method [0.0]
Physics-informed neural networks (PINNs) are capable of finding the solution for a given boundary value problem.
We employ several ideas from the finite element method (FEM) to enhance the performance of existing PINNs in engineering problems.
arXiv Detail & Related papers (2022-06-27T08:18:08Z) - Learning Physics-Informed Neural Networks without Stacked
Back-propagation [82.26566759276105]
We develop a novel approach that can significantly accelerate the training of Physics-Informed Neural Networks.
In particular, we parameterize the PDE solution by the Gaussian smoothed model and show that, derived from Stein's Identity, the second-order derivatives can be efficiently calculated without back-propagation.
Experimental results show that our proposed method can achieve competitive error compared to standard PINN training but is two orders of magnitude faster.
arXiv Detail & Related papers (2022-02-18T18:07:54Z) - Message Passing Neural PDE Solvers [60.77761603258397]
We build a neural message passing solver, replacing allally designed components in the graph with backprop-optimized neural function approximators.
We show that neural message passing solvers representationally contain some classical methods, such as finite differences, finite volumes, and WENO schemes.
We validate our method on various fluid-like flow problems, demonstrating fast, stable, and accurate performance across different domain topologies, equation parameters, discretizations, etc., in 1D and 2D.
arXiv Detail & Related papers (2022-02-07T17:47:46Z) - dNNsolve: an efficient NN-based PDE solver [62.997667081978825]
We introduce dNNsolve, that makes use of dual Neural Networks to solve ODEs/PDEs.
We show that dNNsolve is capable of solving a broad range of ODEs/PDEs in 1, 2 and 3 spacetime dimensions.
arXiv Detail & Related papers (2021-03-15T19:14:41Z) - Fourier Neural Operator for Parametric Partial Differential Equations [57.90284928158383]
We formulate a new neural operator by parameterizing the integral kernel directly in Fourier space.
We perform experiments on Burgers' equation, Darcy flow, and Navier-Stokes equation.
It is up to three orders of magnitude faster compared to traditional PDE solvers.
arXiv Detail & Related papers (2020-10-18T00:34:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.