Overcoming Catastrophic Forgetting in Incremental Few-Shot Learning by
Finding Flat Minima
- URL: http://arxiv.org/abs/2111.01549v1
- Date: Sat, 30 Oct 2021 14:00:40 GMT
- Title: Overcoming Catastrophic Forgetting in Incremental Few-Shot Learning by
Finding Flat Minima
- Authors: Guangyuan Shi, Jiaxin Chen, Wenlong Zhang, Li-Ming Zhan, Xiao-Ming Wu
- Abstract summary: This paper considers incremental few-shot learning, which requires a model to continually recognize new categories with only a few examples.
Our study shows that existing methods severely suffer from catastrophic forgetting, a well-known problem in incremental learning.
We propose to search for flat local minima of the base training objective function and then fine-tune the model parameters within the flat region on new tasks.
- Score: 23.97486216731355
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper considers incremental few-shot learning, which requires a model to
continually recognize new categories with only a few examples provided. Our
study shows that existing methods severely suffer from catastrophic forgetting,
a well-known problem in incremental learning, which is aggravated due to data
scarcity and imbalance in the few-shot setting. Our analysis further suggests
that to prevent catastrophic forgetting, actions need to be taken in the
primitive stage -- the training of base classes instead of later few-shot
learning sessions. Therefore, we propose to search for flat local minima of the
base training objective function and then fine-tune the model parameters within
the flat region on new tasks. In this way, the model can efficiently learn new
classes while preserving the old ones. Comprehensive experimental results
demonstrate that our approach outperforms all prior state-of-the-art methods
and is very close to the approximate upper bound. The source code is available
at https://github.com/moukamisama/F2M.
Related papers
- Covariance-based Space Regularization for Few-shot Class Incremental Learning [25.435192867105552]
Few-shot Class Incremental Learning (FSCIL) requires the model to continually learn new classes with limited labeled data.
Due to the limited data in incremental sessions, models are prone to overfitting new classes and suffering catastrophic forgetting of base classes.
Recent advancements resort to prototype-based approaches to constrain the base class distribution and learn discriminative representations of new classes.
arXiv Detail & Related papers (2024-11-02T08:03:04Z) - Rethinking Classifier Re-Training in Long-Tailed Recognition: A Simple
Logits Retargeting Approach [102.0769560460338]
We develop a simple logits approach (LORT) without the requirement of prior knowledge of the number of samples per class.
Our method achieves state-of-the-art performance on various imbalanced datasets, including CIFAR100-LT, ImageNet-LT, and iNaturalist 2018.
arXiv Detail & Related papers (2024-03-01T03:27:08Z) - Few-Shot Class-Incremental Learning via Training-Free Prototype
Calibration [67.69532794049445]
We find a tendency for existing methods to misclassify the samples of new classes into base classes, which leads to the poor performance of new classes.
We propose a simple yet effective Training-frEE calibratioN (TEEN) strategy to enhance the discriminability of new classes.
arXiv Detail & Related papers (2023-12-08T18:24:08Z) - Prototypical quadruplet for few-shot class incremental learning [24.814045065163135]
We propose a novel method that improves classification robustness by identifying a better embedding space using an improved contrasting loss.
Our approach retains previously acquired knowledge in the embedding space, even when trained with new classes.
We demonstrate the effectiveness of our method by showing that the embedding space remains intact after training the model with new classes and outperforms existing state-of-the-art algorithms in terms of accuracy across different sessions.
arXiv Detail & Related papers (2022-11-05T17:19:14Z) - Fast Hierarchical Learning for Few-Shot Object Detection [57.024072600597464]
Transfer learning approaches have recently achieved promising results on the few-shot detection task.
These approaches suffer from catastrophic forgetting'' issue due to finetuning of base detector.
We tackle the aforementioned issues in this work.
arXiv Detail & Related papers (2022-10-10T20:31:19Z) - Class-Incremental Learning with Strong Pre-trained Models [97.84755144148535]
Class-incremental learning (CIL) has been widely studied under the setting of starting from a small number of classes (base classes)
We explore an understudied real-world setting of CIL that starts with a strong model pre-trained on a large number of base classes.
Our proposed method is robust and generalizes to all analyzed CIL settings.
arXiv Detail & Related papers (2022-04-07T17:58:07Z) - Bridging Non Co-occurrence with Unlabeled In-the-wild Data for
Incremental Object Detection [56.22467011292147]
Several incremental learning methods are proposed to mitigate catastrophic forgetting for object detection.
Despite the effectiveness, these methods require co-occurrence of the unlabeled base classes in the training data of the novel classes.
We propose the use of unlabeled in-the-wild data to bridge the non-occurrence caused by the missing base classes during the training of additional novel classes.
arXiv Detail & Related papers (2021-10-28T10:57:25Z) - Few-Shot Lifelong Learning [35.05196800623617]
Few-Shot Lifelong Learning enables deep learning models to perform lifelong/continual learning on few-shot data.
Our method selects very few parameters from the model for training every new set of classes instead of training the full model.
We experimentally show that our method significantly outperforms existing methods on the miniImageNet, CIFAR-100, and CUB-200 datasets.
arXiv Detail & Related papers (2021-03-01T13:26:57Z) - Few-shot Action Recognition with Prototype-centered Attentive Learning [88.10852114988829]
Prototype-centered Attentive Learning (PAL) model composed of two novel components.
First, a prototype-centered contrastive learning loss is introduced to complement the conventional query-centered learning objective.
Second, PAL integrates a attentive hybrid learning mechanism that can minimize the negative impacts of outliers.
arXiv Detail & Related papers (2021-01-20T11:48:12Z) - Class-incremental Learning with Rectified Feature-Graph Preservation [24.098892115785066]
A central theme of this paper is to learn new classes that arrive in sequential phases over time.
We propose a weighted-Euclidean regularization for old knowledge preservation.
We show how it can work with binary cross-entropy to increase class separation for effective learning of new classes.
arXiv Detail & Related papers (2020-12-15T07:26:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.