Influence of image noise on crack detection performance of deep
convolutional neural networks
- URL: http://arxiv.org/abs/2111.02079v1
- Date: Wed, 3 Nov 2021 09:08:54 GMT
- Title: Influence of image noise on crack detection performance of deep
convolutional neural networks
- Authors: Riccardo Chianese, Andy Nguyen, Vahidreza Gharehbaghi, Thiru
Aravinthan, Mohammad Noori
- Abstract summary: Much research has been conducted on classifying cracks from image data using deep convolutional neural networks.
This paper will investigate the influence of image noise on network accuracy.
AlexNet was selected as the most efficient model based on the proposed index.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Development of deep learning techniques to analyse image data is an expansive
and emerging field. The benefits of tracking, identifying, measuring, and
sorting features of interest from image data has endless applications for
saving cost, time, and improving safety. Much research has been conducted on
classifying cracks from image data using deep convolutional neural networks;
however, minimal research has been conducted to study the efficacy of network
performance when noisy images are used. This paper will address the problem and
is dedicated to investigating the influence of image noise on network accuracy.
The methods used incorporate a benchmark image data set, which is purposely
deteriorated with two types of noise, followed by treatment with image
enhancement pre-processing techniques. These images, including their native
counterparts, are then used to train and validate two different networks to
study the differences in accuracy and performance. Results from this research
reveal that noisy images have a moderate to high impact on the network's
capability to accurately classify images despite the application of image
pre-processing. A new index has been developed for finding the most efficient
method for classification in terms of computation timing and accuracy.
Consequently, AlexNet was selected as the most efficient model based on the
proposed index.
Related papers
- Image edge enhancement for effective image classification [7.470763273994321]
We propose an edge enhancement-based method to enhance both accuracy and training speed of neural networks.
Our approach involves extracting high frequency features, such as edges, from images within the available dataset and fusing them with the original images.
arXiv Detail & Related papers (2024-01-13T10:01:34Z) - Two Approaches to Supervised Image Segmentation [55.616364225463066]
The present work develops comparison experiments between deep learning and multiset neurons approaches.
The deep learning approach confirmed its potential for performing image segmentation.
The alternative multiset methodology allowed for enhanced accuracy while requiring little computational resources.
arXiv Detail & Related papers (2023-07-19T16:42:52Z) - Impact of Scaled Image on Robustness of Deep Neural Networks [0.0]
Scaling the raw images creates out-of-distribution data, which makes it a possible adversarial attack to fool the networks.
In this work, we propose a Scaling-distortion dataset ImageNet-CS by Scaling a subset of the ImageNet Challenge dataset by different multiples.
arXiv Detail & Related papers (2022-09-02T08:06:58Z) - Deep Semantic Statistics Matching (D2SM) Denoising Network [70.01091467628068]
We introduce the Deep Semantic Statistics Matching (D2SM) Denoising Network.
It exploits semantic features of pretrained classification networks, then it implicitly matches the probabilistic distribution of clear images at the semantic feature space.
By learning to preserve the semantic distribution of denoised images, we empirically find our method significantly improves the denoising capabilities of networks.
arXiv Detail & Related papers (2022-07-19T14:35:42Z) - Unsupervised Denoising of Optical Coherence Tomography Images with
Dual_Merged CycleWGAN [3.3909577600092122]
We propose a new Cycle-Consistent Generative Adversarial Nets called Dual-Merged Cycle-WGAN for retinal OCT image denoiseing.
Our model consists of two Cycle-GAN networks with imporved generator, descriminator and wasserstein loss to achieve good training stability and better performance.
arXiv Detail & Related papers (2022-05-02T07:38:19Z) - Sharp-GAN: Sharpness Loss Regularized GAN for Histopathology Image
Synthesis [65.47507533905188]
Conditional generative adversarial networks have been applied to generate synthetic histopathology images.
We propose a sharpness loss regularized generative adversarial network to synthesize realistic histopathology images.
arXiv Detail & Related papers (2021-10-27T18:54:25Z) - Attention-Aware Noisy Label Learning for Image Classification [97.26664962498887]
Deep convolutional neural networks (CNNs) learned on large-scale labeled samples have achieved remarkable progress in computer vision.
The cheapest way to obtain a large body of labeled visual data is to crawl from websites with user-supplied labels, such as Flickr.
This paper proposes the attention-aware noisy label learning approach to improve the discriminative capability of the network trained on datasets with potential label noise.
arXiv Detail & Related papers (2020-09-30T15:45:36Z) - Exploring Intensity Invariance in Deep Neural Networks for Brain Image
Registration [0.0]
We investigate the effect of intensity distribution among input image pairs for deep learning-based image registration methods.
Deep learning models trained with structure similarity-based loss seems to perform better for both datasets.
arXiv Detail & Related papers (2020-09-21T17:49:03Z) - Dual Adversarial Network: Toward Real-world Noise Removal and Noise
Generation [52.75909685172843]
Real-world image noise removal is a long-standing yet very challenging task in computer vision.
We propose a novel unified framework to deal with the noise removal and noise generation tasks.
Our method learns the joint distribution of the clean-noisy image pairs.
arXiv Detail & Related papers (2020-07-12T09:16:06Z) - Variational Denoising Network: Toward Blind Noise Modeling and Removal [59.36166491196973]
Blind image denoising is an important yet very challenging problem in computer vision.
We propose a new variational inference method, which integrates both noise estimation and image denoising.
arXiv Detail & Related papers (2019-08-29T15:54:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.