論文の概要: Convolutional Motif Kernel Networks
- arxiv url: http://arxiv.org/abs/2111.02272v1
- Date: Wed, 3 Nov 2021 15:06:09 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-04 15:46:13.882056
- Title: Convolutional Motif Kernel Networks
- Title(参考訳): 畳み込みモチーフカーネルネットワーク
- Authors: Jonas C. Ditz, Bernhard Reuter, Nico Pfeifer
- Abstract要約: モチーフカーネル関数の再生カーネル空間のサブ空間内に特徴表現を学習するニューラルネットワークアーキテクチャを導入する。
得られたモデルには最先端のパフォーマンスがあり、研究者やドメインの専門家は、ポストホックな説明可能性法を必要とせずに、予測結果を直接解釈し、検証することができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Artificial neural networks are exceptionally good in learning to detect
correlations within data that are associated with specified outcomes. However
to deepen knowledge and support further research, researchers have to be able
to explain predicted outcomes within the data's domain. Furthermore, domain
experts like Healthcare Providers need these explanations to assess whether a
predicted outcome can be trusted in high stakes scenarios and to help them
incorporating a model into their own routine. In this paper we introduce
Convolutional Motif Kernel Networks, a neural network architecture that
incorporates learning a feature representation within a subspace of the
reproducing kernel Hilbert space of the motif kernel function. The resulting
model has state-of-the-art performance and enables researchers and domain
experts to directly interpret and verify prediction outcomes without the need
for a post hoc explainability method.
- Abstract(参考訳): ニューラルネットワークは、特定の結果に関連するデータ内の相関を検出するのに非常に適しています。
しかし、知識の深化とさらなる研究を支援するために、研究者はデータ領域内の予測結果を説明する必要がある。
さらに、Healthcare Providersのようなドメインの専門家は、予測された結果が高い利害関係のシナリオで信頼できるかどうかを評価するために、これらの説明を必要とします。
本稿では,モチーフカーネル関数の再生カーネルヒルベルト空間の部分空間内で特徴表現を学習するニューラルネットワークアーキテクチャである畳み込みモチーフカーネルネットワークを提案する。
結果として得られたモデルは最先端のパフォーマンスを持ち、研究者やドメインの専門家がポストホックな説明可能性メソッドを必要とせずに、予測結果を直接解釈し検証することができる。
関連論文リスト
- Deep Learning Through A Telescoping Lens: A Simple Model Provides Empirical Insights On Grokking, Gradient Boosting & Beyond [61.18736646013446]
その驚くべき振る舞いをより深く理解するために、トレーニングされたニューラルネットワークの単純かつ正確なモデルの有用性について検討する。
3つのケーススタディで、様々な顕著な現象に関する新しい経験的洞察を導き出すためにどのように適用できるかを説明します。
論文 参考訳(メタデータ) (2024-10-31T22:54:34Z) - Seeing Unseen: Discover Novel Biomedical Concepts via
Geometry-Constrained Probabilistic Modeling [53.7117640028211]
同定された問題を解決するために,幾何制約付き確率的モデリング処理を提案する。
構成された埋め込み空間のレイアウトに適切な制約を課すために、重要な幾何学的性質のスイートを組み込む。
スペクトルグラフ理論法は、潜在的な新規クラスの数を推定するために考案された。
論文 参考訳(メタデータ) (2024-03-02T00:56:05Z) - Unraveling Feature Extraction Mechanisms in Neural Networks [10.13842157577026]
本稿では, ニューラルネットワークカーネル(NTK)に基づく理論的手法を提案し, そのメカニズムを解明する。
これらのモデルが勾配降下時の統計的特徴をどのように活用し、最終決定にどのように統合されるかを明らかにする。
自己注意モデルとCNNモデルはn-gramの学習の限界を示すが、乗算モデルはこの領域で優れていると考えられる。
論文 参考訳(メタデータ) (2023-10-25T04:22:40Z) - Deep networks for system identification: a Survey [56.34005280792013]
システム識別は、入力出力データから動的システムの数学的記述を学習する。
同定されたモデルの主な目的は、以前の観測から新しいデータを予測することである。
我々は、フィードフォワード、畳み込み、リカレントネットワークなどの文献で一般的に採用されているアーキテクチャについて論じる。
論文 参考訳(メタデータ) (2023-01-30T12:38:31Z) - Visual Interpretable and Explainable Deep Learning Models for Brain
Tumor MRI and COVID-19 Chest X-ray Images [0.0]
我々は、ディープニューラルネットワークが医療画像をどのように分析するかを照らすための属性手法を評価する。
我々は近年の深層畳み込みニューラルネットワークモデルによる脳腫瘍MRIと新型コロナウイルス胸部X線データセットからの予測を属性とした。
論文 参考訳(メタデータ) (2022-08-01T16:05:14Z) - Inducing Gaussian Process Networks [80.40892394020797]
本稿では,特徴空間と誘導点を同時に学習するシンプルなフレームワークであるGaussian Process Network (IGN)を提案する。
特に誘導点は特徴空間で直接学習され、複雑な構造化領域のシームレスな表現を可能にする。
実世界のデータセットに対する実験結果から,IGNは最先端の手法よりも大幅に進歩していることを示す。
論文 参考訳(メタデータ) (2022-04-21T05:27:09Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - Deep Co-Attention Network for Multi-View Subspace Learning [73.3450258002607]
マルチビューサブスペース学習のための深層コアテンションネットワークを提案する。
共通情報と相補情報の両方を敵意で抽出することを目的としている。
特に、新しいクロス再構成損失を使用し、ラベル情報を利用して潜在表現の構築を誘導する。
論文 参考訳(メタデータ) (2021-02-15T18:46:44Z) - Interpretable Neural Networks for Panel Data Analysis in Economics [10.57079240576682]
本稿では,高い予測精度と解釈可能性の両方を達成可能な,解釈可能なニューラルネットワークモデルのクラスを提案する。
高次元の行政データを用いて、個人の月間雇用状況を予測するモデルを適用した。
テストセットの精度は94.5%で、従来の機械学習手法に匹敵する。
論文 参考訳(メタデータ) (2020-10-11T18:40:22Z) - An Investigation of Interpretability Techniques for Deep Learning in
Predictive Process Analytics [2.162419921663162]
本稿では、深層ニューラルネットワークとランダムフォレストという、医学的意思決定文学において最も成功した学習アルゴリズムの2つの解釈可能性手法について検討する。
我々は,患者のがんの種類を予測するためのモデルを学ぶ。
がんのタイプに関する有用な洞察を提供する予測に使用される特定の特徴と、十分に一般化されていない特徴が見られます。
論文 参考訳(メタデータ) (2020-02-21T09:14:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。