A Meta-Learned Neuron model for Continual Learning
- URL: http://arxiv.org/abs/2111.02557v1
- Date: Wed, 3 Nov 2021 23:39:14 GMT
- Title: A Meta-Learned Neuron model for Continual Learning
- Authors: Rodrigue Siry
- Abstract summary: Continual learning is the ability to acquire new knowledge without forgetting the previously learned one.
In this work, we replace the standard neuron by a meta-learned neuron model.
Our approach can memorize dataset-length sequences of training samples, and its learning capabilities generalize to any domain.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Continual learning is the ability to acquire new knowledge without forgetting
the previously learned one, assuming no further access to past training data.
Neural network approximators trained with gradient descent are known to fail in
this setting as they must learn from a stream of data-points sampled from a
stationary distribution to converge. In this work, we replace the standard
neuron by a meta-learned neuron model whom inference and update rules are
optimized to minimize catastrophic interference. Our approach can memorize
dataset-length sequences of training samples, and its learning capabilities
generalize to any domain. Unlike previous continual learning methods, our
method does not make any assumption about how tasks are constructed, delivered
and how they relate to each other: it simply absorbs and retains training
samples one by one, whether the stream of input data is time-correlated or not.
Related papers
- Learning to Continually Learn with the Bayesian Principle [36.75558255534538]
In this work, we adopt the meta-learning paradigm to combine the strong representational power of neural networks and simple statistical models' robustness to forgetting.
Since the neural networks remain fixed during continual learning, they are protected from catastrophic forgetting.
arXiv Detail & Related papers (2024-05-29T04:53:31Z) - Premonition: Using Generative Models to Preempt Future Data Changes in
Continual Learning [63.850451635362425]
Continual learning requires a model to adapt to ongoing changes in the data distribution.
We show that the combination of a large language model and an image generation model can similarly provide useful premonitions.
We find that the backbone of our pre-trained networks can learn representations useful for the downstream continual learning problem.
arXiv Detail & Related papers (2024-03-12T06:29:54Z) - Enhancing Consistency and Mitigating Bias: A Data Replay Approach for
Incremental Learning [100.7407460674153]
Deep learning systems are prone to catastrophic forgetting when learning from a sequence of tasks.
To mitigate the problem, a line of methods propose to replay the data of experienced tasks when learning new tasks.
However, it is not expected in practice considering the memory constraint or data privacy issue.
As a replacement, data-free data replay methods are proposed by inverting samples from the classification model.
arXiv Detail & Related papers (2024-01-12T12:51:12Z) - Learn to Unlearn for Deep Neural Networks: Minimizing Unlearning
Interference with Gradient Projection [56.292071534857946]
Recent data-privacy laws have sparked interest in machine unlearning.
Challenge is to discard information about the forget'' data without altering knowledge about remaining dataset.
We adopt a projected-gradient based learning method, named as Projected-Gradient Unlearning (PGU)
We provide empirically evidence to demonstrate that our unlearning method can produce models that behave similar to models retrained from scratch across various metrics even when the training dataset is no longer accessible.
arXiv Detail & Related papers (2023-12-07T07:17:24Z) - Transferring Learning Trajectories of Neural Networks [2.2299983745857896]
Training deep neural networks (DNNs) is computationally expensive.
We formulate the problem of "transferring" a given learning trajectory from one initial parameter to another one.
We empirically show that the transferred parameters achieve non-trivial accuracy before any direct training, and can be trained significantly faster than training from scratch.
arXiv Detail & Related papers (2023-05-23T14:46:32Z) - Learn, Unlearn and Relearn: An Online Learning Paradigm for Deep Neural
Networks [12.525959293825318]
We introduce Learn, Unlearn, and Relearn (LURE) an online learning paradigm for deep neural networks (DNNs)
LURE interchanges between the unlearning phase, which selectively forgets the undesirable information in the model, and the relearning phase, which emphasizes learning on generalizable features.
We show that our training paradigm provides consistent performance gains across datasets in both classification and few-shot settings.
arXiv Detail & Related papers (2023-03-18T16:45:54Z) - Explain to Not Forget: Defending Against Catastrophic Forgetting with
XAI [10.374979214803805]
Catastrophic forgetting describes the phenomenon when a neural network completely forgets previous knowledge when given new information.
We propose a novel training algorithm called training by explaining in which we leverage Layer-wise Relevance propagation in order to retain the information a neural network has already learned in previous tasks when training on new data.
Our method not only successfully retains the knowledge of old tasks within the neural networks but does so more resource-efficiently than other state-of-the-art solutions.
arXiv Detail & Related papers (2022-05-04T08:00:49Z) - On Generalizing Beyond Domains in Cross-Domain Continual Learning [91.56748415975683]
Deep neural networks often suffer from catastrophic forgetting of previously learned knowledge after learning a new task.
Our proposed approach learns new tasks under domain shift with accuracy boosts up to 10% on challenging datasets such as DomainNet and OfficeHome.
arXiv Detail & Related papers (2022-03-08T09:57:48Z) - Continual Learning via Bit-Level Information Preserving [88.32450740325005]
We study the continual learning process through the lens of information theory.
We propose Bit-Level Information Preserving (BLIP) that preserves the information gain on model parameters.
BLIP achieves close to zero forgetting while only requiring constant memory overheads throughout continual learning.
arXiv Detail & Related papers (2021-05-10T15:09:01Z) - A Survey on Self-supervised Pre-training for Sequential Transfer
Learning in Neural Networks [1.1802674324027231]
Self-supervised pre-training for transfer learning is becoming an increasingly popular technique to improve state-of-the-art results using unlabeled data.
We provide an overview of the taxonomy for self-supervised learning and transfer learning, and highlight some prominent methods for designing pre-training tasks across different domains.
arXiv Detail & Related papers (2020-07-01T22:55:48Z) - Automatic Recall Machines: Internal Replay, Continual Learning and the
Brain [104.38824285741248]
Replay in neural networks involves training on sequential data with memorized samples, which counteracts forgetting of previous behavior caused by non-stationarity.
We present a method where these auxiliary samples are generated on the fly, given only the model that is being trained for the assessed objective.
Instead the implicit memory of learned samples within the assessed model itself is exploited.
arXiv Detail & Related papers (2020-06-22T15:07:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.