論文の概要: The role of MRI physics in brain segmentation CNNs: achieving
acquisition invariance and instructive uncertainties
- arxiv url: http://arxiv.org/abs/2111.02771v1
- Date: Thu, 4 Nov 2021 11:52:49 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-05 14:44:06.867189
- Title: The role of MRI physics in brain segmentation CNNs: achieving
acquisition invariance and instructive uncertainties
- Title(参考訳): 脳セグメンテーションCNNにおけるMRI物理の役割 : 獲得不均一性の実現と指導的不確実性
- Authors: Pedro Borges, Richard Shaw, Thomas Varsavsky, Kerstin Klaser, David
Thomas, Ivana Drobnjak, Sebastien Ourselin and M Jorge Cardoso
- Abstract要約: 本稿では,物理インフォームド・不確実性を考慮したセグメンテーションネットワークの有効性を示す。
提案手法は, 分布外配列サンプルに対して精度良く外挿することを示す。
本研究では,不確実性に基づくボリューム検証による変動係数の大幅な改善を示す。
- 参考スコア(独自算出の注目度): 3.46329153611365
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Being able to adequately process and combine data arising from different
sites is crucial in neuroimaging, but is difficult, owing to site, sequence and
acquisition-parameter dependent biases. It is important therefore to design
algorithms that are not only robust to images of differing contrasts, but also
be able to generalise well to unseen ones, with a quantifiable measure of
uncertainty. In this paper we demonstrate the efficacy of a physics-informed,
uncertainty-aware, segmentation network that employs augmentation-time MR
simulations and homogeneous batch feature stratification to achieve acquisition
invariance. We show that the proposed approach also accurately extrapolates to
out-of-distribution sequence samples, providing well calibrated volumetric
bounds on these. We demonstrate a significant improvement in terms of
coefficients of variation, backed by uncertainty based volumetric validation.
- Abstract(参考訳): 異なる場所から発生したデータを適切に処理し、組み合わせることが神経イメージングにおいて重要であるが、サイト、シーケンス、取得パラメータ依存バイアスのため困難である。
したがって、異なるコントラストの画像に対して堅牢であるだけでなく、不確実性の定量化によって、目に見えないものに対してうまく一般化できるアルゴリズムを設計することが重要である。
本稿では,拡張時間MRシミュレーションと均質なバッチ特徴階層化を用いた物理インフォームド・不確実性を考慮したセグメンテーションネットワークの有効性を示す。
提案手法は, 分布外配列のサンプルを正確に外挿し, キャリブレーションされた体積境界を提供する。
本研究では,不確実性に基づくボリューム検証による変動係数の大幅な改善を示す。
関連論文リスト
- Hierarchical uncertainty estimation for learning-based registration in neuroimaging [10.964653898591413]
本研究では,空間的位置の程度で推定される不確実性を伝播する原理的手法を提案する。
実験により,脳MRI画像の登録精度が向上することが確認された。
論文 参考訳(メタデータ) (2024-10-11T23:12:16Z) - DiffHybrid-UQ: Uncertainty Quantification for Differentiable Hybrid
Neural Modeling [4.76185521514135]
本稿では,ハイブリッドニューラル微分可能モデルにおける有効かつ効率的な不確実性伝播と推定のための新しい手法DiffHybrid-UQを提案する。
具体的には,データノイズとてんかんの不確かさから生じるアレタリック不確かさと,モデル形状の相違やデータ空間のばらつきから生じるエピステマティック不確かさの両方を効果的に識別し,定量化する。
論文 参考訳(メタデータ) (2023-12-30T07:40:47Z) - Structural-Based Uncertainty in Deep Learning Across Anatomical Scales: Analysis in White Matter Lesion Segmentation [8.64414399041931]
不確実性定量化(英: Uncertainty Quantification、UQ)は、ホワイトマター病変(WML)セグメンテーションの文脈における、自動ディープラーニング(DL)ツールの信頼性の指標である。
我々は, 構造的予測の相違から, 病変や患者スケールの不確かさを定量化する尺度を開発した。
444例の多心MRIデータから, 病変のモデル誤差をより効果的に把握し, 患者規模を計測できることが示唆された。
論文 参考訳(メタデータ) (2023-11-15T13:04:57Z) - Toward Robust Uncertainty Estimation with Random Activation Functions [3.0586855806896045]
本稿では,ランダムアクティベーション関数(RAF)アンサンブルを用いた不確実性定量化手法を提案する。
RAF アンサンブルは、合成データセットと実世界のデータセットの両方において、最先端のアンサンブル不確実性定量化手法より優れている。
論文 参考訳(メタデータ) (2023-02-28T13:17:56Z) - Towards Reliable Medical Image Segmentation by utilizing Evidential Calibrated Uncertainty [52.03490691733464]
本稿では,医療画像セグメンテーションネットワークにシームレスに統合可能な,実装が容易な基礎モデルであるDEviSを紹介する。
主観的論理理論を利用して、医用画像分割の問題に対する確率と不確実性を明示的にモデル化する。
DeviSには不確実性を考慮したフィルタリングモジュールが組み込まれている。
論文 参考訳(メタデータ) (2023-01-01T05:02:46Z) - Monotonicity and Double Descent in Uncertainty Estimation with Gaussian
Processes [52.92110730286403]
限界確率はクロスバリデーションの指標を思い起こさせるべきであり、どちらもより大きな入力次元で劣化すべきである、と一般的に信じられている。
我々は,ハイパーパラメータをチューニングすることにより,入力次元と単調に改善できることを証明した。
また、クロスバリデーションの指標は、二重降下の特徴である質的に異なる挙動を示すことも証明した。
論文 参考訳(メタデータ) (2022-10-14T08:09:33Z) - The Unreasonable Effectiveness of Deep Evidential Regression [72.30888739450343]
不確実性を考慮した回帰ベースニューラルネットワーク(NN)による新しいアプローチは、従来の決定論的手法や典型的なベイズ的NNよりも有望であることを示している。
我々は、理論的欠点を詳述し、合成および実世界のデータセットのパフォーマンスを分析し、Deep Evidential Regressionが正確な不確実性ではなく定量化であることを示す。
論文 参考訳(メタデータ) (2022-05-20T10:10:32Z) - BayesIMP: Uncertainty Quantification for Causal Data Fusion [52.184885680729224]
本研究では,複数の因果グラフに関連するデータセットを組み合わせ,対象変数の平均処理効果を推定する因果データ融合問題について検討する。
本稿では、確率積分とカーネル平均埋め込みのアイデアを組み合わせて、再生されたカーネルヒルベルト空間における干渉分布を表現するフレームワークを提案する。
論文 参考訳(メタデータ) (2021-06-07T10:14:18Z) - Bayesian Uncertainty Estimation of Learned Variational MRI
Reconstruction [63.202627467245584]
我々は,モデル不連続な不確かさを定量化するベイズ変分フレームワークを提案する。
提案手法はMRIのアンダーサンプを用いた再建術の術後成績を示す。
論文 参考訳(メタデータ) (2021-02-12T18:08:14Z) - The Hidden Uncertainty in a Neural Networks Activations [105.4223982696279]
ニューラルネットワークの潜在表現の分布は、アウト・オブ・ディストリビューション(OOD)データの検出に成功している。
本研究は、この分布が、モデルの不確実性と相関しているかどうかを考察し、新しい入力に一般化する能力を示す。
論文 参考訳(メタデータ) (2020-12-05T17:30:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。