Sympathetic cooling and squeezing of two co-levitated nanoparticles
- URL: http://arxiv.org/abs/2111.03123v3
- Date: Tue, 8 Nov 2022 14:20:26 GMT
- Title: Sympathetic cooling and squeezing of two co-levitated nanoparticles
- Authors: T. W. Penny and A. Pontin and P. F. Barker
- Abstract summary: Levitated particles are an ideal tool for measuring weak forces and investigating quantum mechanics in macroscopic objects.
This work establishes protocols to cool and manipulate arrays of nanoparticles for sensing and minimising the effect of optical heating in future experiments.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Levitated particles are an ideal tool for measuring weak forces and
investigating quantum mechanics in macroscopic objects. Arrays of two or more
of these particles have been suggested for improving force sensitivity and
entangling macropscopic objects. In this article, two charged, silica
nanoparticles, that are coupled through their mutual Coulomb repulsion, are
trapped in a Paul trap, and the individual masses and charges of both particles
are characterised. We demonstrate sympathetic cooling of one nanoparticle
coupled via the Coulomb interaction to the second nanoparticle to which
feedback cooling is directly applied. We also implement sympathetic squeezing
through a similar process showing non-thermal motional states can be
transferred by the Coulomb interaction. This work establishes protocols to cool
and manipulate arrays of nanoparticles for sensing and minimising the effect of
optical heating in future experiments.
Related papers
- Simultaneous ground-state cooling of two levitated nanoparticles by coherent scattering [13.372855698780647]
Simultaneous ground-state cooling of two levitated nanoparticles is a crucial prerequisite for investigation of macroscopic quantum effects.
We study the simultaneous cooling of these mechanical modes in both the three-mode and five-mode cavity-levitated optomechanical models.
arXiv Detail & Related papers (2023-12-26T06:23:35Z) - The strongly driven Fermi polaron [49.81410781350196]
Quasiparticles are emergent excitations of matter that underlie much of our understanding of quantum many-body systems.
We take advantage of the clean setting of homogeneous quantum gases and fast radio-frequency control to manipulate Fermi polarons.
We measure the decay rate and the quasiparticle residue of the driven polaron from the Rabi oscillations between the two internal states.
arXiv Detail & Related papers (2023-08-10T17:59:51Z) - Cold damping of levitated optically coupled nanoparticles [0.0]
Methods for controlling the motion of single particles, optically levitated in vacuum, have developed rapidly in recent years.
We show that the same method can be applied to a pair of nanoparticles, coupled by optical binding forces.
We demonstrate cold damping of these normal modes, either independently or simultaneously, to sub-Kelvin temperatures at pressures of 5x10-3 mbar.
arXiv Detail & Related papers (2023-05-19T16:46:10Z) - 3D sympathetic cooling and detection of levitated nanoparticles [0.0]
Cooling the center-of-mass motion of levitated nanoparticles provides a route to quantum experiments at mesoscopic scales.
We demonstrate three-dimensional sympathetic cooling and detection of the center-of-mass motion of a levitated silica nanoparticles.
arXiv Detail & Related papers (2022-10-14T07:29:53Z) - Production of twisted particles in magnetic fields [62.997667081978825]
Quantum states suitable for a production of charged particles in a uniform magnetic field are determined.
Experiments allowing one successful discoveries of twisted positrons and positroniums are developed.
arXiv Detail & Related papers (2022-07-28T14:20:36Z) - Scalable all-optical cold damping of levitated nanoparticles [3.0112534079486846]
We introduce a novel all-optical cold damping scheme based on spatial modulation of the trap position.
We show that the technique cools the center-of-mass motion of particles down to $17,$mK at a pressure of $2 times 10-6,$mbar.
Our work paves the way towards studying quantum interactions between particles, achieving 3D quantum control of particle motion without cavity-based cooling, electrodes or charged particles.
arXiv Detail & Related papers (2022-05-09T17:57:20Z) - Force-Gradient Sensing and Entanglement via Feedback Cooling of
Interacting Nanoparticles [0.0]
We show that feedback-cooling of two levitated, interacting nanoparticles enables differential sensing of forces and the observation of stationary entanglement.
We predict that force-gradient sensing at the zepto-Newton per micron range is feasible and that entanglement due to the Coulomb interaction between charged particles can be realistically observed in state-of-the-art setups.
arXiv Detail & Related papers (2022-04-28T17:48:53Z) - Observation-dependent suppression and enhancement of two-photon
coincidences by tailored losses [68.8204255655161]
Hong-Ou-Mandel (HOM) effect can lead to a perfect suppression of two-particle coincidences between the output ports of a balanced beam splitter.
In this work, we demonstrate experimentally that the two-particle coincidence statistics of two bosons can instead be seamlessly tuned to substantial enhancement.
Our findings reveal a new approach to harnessing non-Hermitian settings for the manipulation of multi-particle quantum states.
arXiv Detail & Related papers (2021-05-12T06:47:35Z) - Detectable Signature of Quantum Friction on a Sliding Particle in Vacuum [58.720142291102135]
We show traces of quantum friction in the degradation of the quantum coherence of a particle.
We propose to use the accumulated geometric phase acquired by a particle as a quantum friction sensor.
The experimentally viable scheme presented can spark renewed optimism for the detection of non-contact friction.
arXiv Detail & Related papers (2021-03-22T16:25:27Z) - Chemical tuning of spin clock transitions in molecular monomers based on
nuclear spin-free Ni(II) [52.259804540075514]
We report the existence of a sizeable quantum tunnelling splitting between the two lowest electronic spin levels of mononuclear Ni complexes.
The level anti-crossing, or magnetic clock transition, associated with this gap has been directly monitored by heat capacity experiments.
The comparison of these results with those obtained for a Co derivative, for which tunnelling is forbidden by symmetry, shows that the clock transition leads to an effective suppression of intermolecular spin-spin interactions.
arXiv Detail & Related papers (2021-03-04T13:31:40Z) - Enhanced decoherence for a neutral particle sliding on a metallic
surface in vacuum [68.8204255655161]
We show that non-contact friction enhances the decoherence of the moving atom.
We suggest that measuring decoherence times through velocity dependence of coherences could indirectly demonstrate the existence of quantum friction.
arXiv Detail & Related papers (2020-11-06T17:34:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.