3D sympathetic cooling and detection of levitated nanoparticles
- URL: http://arxiv.org/abs/2210.07583v2
- Date: Mon, 27 Mar 2023 09:46:32 GMT
- Title: 3D sympathetic cooling and detection of levitated nanoparticles
- Authors: Dmitry S. Bykov, Lorenzo Dania, Florian Goschin, Tracy E. Northup
- Abstract summary: Cooling the center-of-mass motion of levitated nanoparticles provides a route to quantum experiments at mesoscopic scales.
We demonstrate three-dimensional sympathetic cooling and detection of the center-of-mass motion of a levitated silica nanoparticles.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cooling the center-of-mass motion of levitated nanoparticles provides a route
to quantum experiments at mesoscopic scales. Here we demonstrate
three-dimensional sympathetic cooling and detection of the center-of-mass
motion of a levitated silica nanoparticle. The nanoparticle is
electrostatically coupled to a feedback-cooled particle while both particles
are trapped in the same Paul trap. We identify two regimes, based on the
strength of the cooling: in the first regime, the sympathetically cooled
particle thermalizes with the directly cooled one, while in the second regime,
the sympathetically cooled particle reaches a minimum temperature. This result
provides a route to efficiently cool and detect particles that cannot be
illuminated with strong laser light, such as absorptive particles, and paves
the way for controlling the motion of arrays of several trapped nanoparticles.
Related papers
- Prospects of phase-adaptive cooling of levitated magnetic particles in a hollow-core photonic-crystal fibre [0.0]
We analyze the feasibility of cooling of classical motion of a micro- to nano-sized magnetic particle, levitated inside a hollow-core photonic crystal fiber.
Our results bring forward an important step towards using trapped micro-magnets in sensing, testing the fundamental physics and preparing the quantum states of magnetization.
arXiv Detail & Related papers (2024-10-03T17:20:49Z) - Motional entanglement of remote optically levitated nanoparticles [0.0]
We show how to entangle the motion of optically levitated nanoparticles in distant optical tweezers.
The scheme consists in coupling the inelastically scattered light of each particle into transmission lines and directing it towards the other particle.
arXiv Detail & Related papers (2024-08-26T17:27:28Z) - Simultaneous ground-state cooling of two levitated nanoparticles by coherent scattering [13.372855698780647]
Simultaneous ground-state cooling of two levitated nanoparticles is a crucial prerequisite for investigation of macroscopic quantum effects.
We study the simultaneous cooling of these mechanical modes in both the three-mode and five-mode cavity-levitated optomechanical models.
arXiv Detail & Related papers (2023-12-26T06:23:35Z) - Dynamics of molecular rotors in bulk superfluid helium [68.8204255655161]
We report on the experimental study of the laser-induced rotation of helium dimers inside the superfluid $4mathrmHe$ bath at variable temperature.
The observed temperature dependence suggests a non-equilibrium evolution of the quantum bath, accompanied by the emission of the wave of second sound.
arXiv Detail & Related papers (2023-04-08T01:22:19Z) - Production of twisted particles in magnetic fields [62.997667081978825]
Quantum states suitable for a production of charged particles in a uniform magnetic field are determined.
Experiments allowing one successful discoveries of twisted positrons and positroniums are developed.
arXiv Detail & Related papers (2022-07-28T14:20:36Z) - Scalable all-optical cold damping of levitated nanoparticles [3.0112534079486846]
We introduce a novel all-optical cold damping scheme based on spatial modulation of the trap position.
We show that the technique cools the center-of-mass motion of particles down to $17,$mK at a pressure of $2 times 10-6,$mbar.
Our work paves the way towards studying quantum interactions between particles, achieving 3D quantum control of particle motion without cavity-based cooling, electrodes or charged particles.
arXiv Detail & Related papers (2022-05-09T17:57:20Z) - Sympathetic cooling and squeezing of two co-levitated nanoparticles [0.0]
Levitated particles are an ideal tool for measuring weak forces and investigating quantum mechanics in macroscopic objects.
This work establishes protocols to cool and manipulate arrays of nanoparticles for sensing and minimising the effect of optical heating in future experiments.
arXiv Detail & Related papers (2021-11-04T19:44:45Z) - Stochastic Variational Approach to Small Atoms and Molecules Coupled to
Quantum Field Modes [55.41644538483948]
We present a variational calculation (SVM) of energies and wave functions of few particle systems coupled to quantum fields in cavity QED.
Examples for a two-dimensional trion and confined electrons as well as for the He atom and the Hydrogen molecule are presented.
arXiv Detail & Related papers (2021-08-25T13:40:42Z) - Observation-dependent suppression and enhancement of two-photon
coincidences by tailored losses [68.8204255655161]
Hong-Ou-Mandel (HOM) effect can lead to a perfect suppression of two-particle coincidences between the output ports of a balanced beam splitter.
In this work, we demonstrate experimentally that the two-particle coincidence statistics of two bosons can instead be seamlessly tuned to substantial enhancement.
Our findings reveal a new approach to harnessing non-Hermitian settings for the manipulation of multi-particle quantum states.
arXiv Detail & Related papers (2021-05-12T06:47:35Z) - Detectable Signature of Quantum Friction on a Sliding Particle in Vacuum [58.720142291102135]
We show traces of quantum friction in the degradation of the quantum coherence of a particle.
We propose to use the accumulated geometric phase acquired by a particle as a quantum friction sensor.
The experimentally viable scheme presented can spark renewed optimism for the detection of non-contact friction.
arXiv Detail & Related papers (2021-03-22T16:25:27Z) - Enhanced decoherence for a neutral particle sliding on a metallic
surface in vacuum [68.8204255655161]
We show that non-contact friction enhances the decoherence of the moving atom.
We suggest that measuring decoherence times through velocity dependence of coherences could indirectly demonstrate the existence of quantum friction.
arXiv Detail & Related papers (2020-11-06T17:34:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.