論文の概要: DVFL: A Vertical Federated Learning Method for Dynamic Data
- arxiv url: http://arxiv.org/abs/2111.03341v1
- Date: Fri, 5 Nov 2021 09:26:09 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-08 20:46:00.808533
- Title: DVFL: A Vertical Federated Learning Method for Dynamic Data
- Title(参考訳): DVFL:動的データのための垂直フェデレーション学習法
- Authors: Yuzhi Liang and Yixiang Chen
- Abstract要約: 本稿では,共同作業を行う組織が,同じユーザ集合を共有できるが,機能に相容れないシナリオに対処する,垂直連合学習(VFL)について検討する。
本稿では,知識蒸留による動的データ分布変化に適応する,新しい縦型フェデレーション学習手法DVFLを提案する。
DVFLは静的シーンにおける既存のVFL手法に近い結果を得るだけでなく,動的シナリオにおけるデータ分布の変化にも適応できることを示す。
- 参考スコア(独自算出の注目度): 2.406222636382325
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated learning, which solves the problem of data island by connecting
multiple computational devices into a decentralized system, has become a
promising paradigm for privacy-preserving machine learning. This paper studies
vertical federated learning (VFL), which tackles the scenarios where
collaborating organizations share the same set of users but disjoint features.
Contemporary VFL methods are mainly used in static scenarios where the active
party and the passive party have all the data from the beginning and will not
change. However, the data in real life often changes dynamically. To alleviate
this problem, we propose a new vertical federation learning method, DVFL, which
adapts to dynamic data distribution changes through knowledge distillation. In
DVFL, most of the computations are held locally to improve data security and
model efficiency. Our extensive experimental results show that DVFL can not
only obtain results close to existing VFL methods in static scenes, but also
adapt to changes in data distribution in dynamic scenarios.
- Abstract(参考訳): 複数の計算デバイスを分散システムに接続することでデータアイランドの問題を解決するフェデレーション・ラーニングは、プライバシ保存機械学習の有望なパラダイムとなっている。
本稿では,共同作業を行う組織が,同じユーザ集合を共有できるが,機能に相容れないシナリオに対処する,垂直連合学習(VFL)について検討する。
現在のvflメソッドは主に、アクティブなパーティとパッシブなパーティが最初からすべてのデータを持ち、変更しない静的なシナリオで使用される。
しかし、実生活のデータはしばしば動的に変化する。
この問題を軽減するため,我々は,知識蒸留による動的データ分布変化に対応する新しい垂直フェデレーション学習法であるdvflを提案する。
DVFLでは、ほとんどの計算はデータセキュリティとモデル効率を改善するためにローカルに保持される。
DVFLは静的シーンにおける既存のVFL手法に近い結果を得るだけでなく,動的シナリオにおけるデータ分布の変化にも適応できることを示す。
関連論文リスト
- Stalactite: Toolbox for Fast Prototyping of Vertical Federated Learning Systems [37.11550251825938]
本稿では,VFL(Vertical Federated Learning)システムのためのオープンソースのフレームワークであるemphStalactiteを紹介する。
VFLはデータサンプルが複数のデータ所有者にまたがる機能によって分割されるFLの一種である。
実世界のレコメンデーションデータセットでその使い方を実証する。
論文 参考訳(メタデータ) (2024-09-23T21:29:03Z) - UIFV: Data Reconstruction Attack in Vertical Federated Learning [5.404398887781436]
Vertical Federated Learning (VFL)は、参加者が生のプライベートデータを共有することなく、協調的な機械学習を促進する。
近年の研究では、学習プロセス中にデータ漏洩によって、敵が機密性を再構築する可能性のあるプライバシーリスクが明らかにされている。
我々の研究は、実用的なVFLアプリケーションに真の脅威をもたらす、VFLシステム内の深刻なプライバシー上の脆弱性を露呈する。
論文 参考訳(メタデータ) (2024-06-18T13:18:52Z) - MultiConfederated Learning: Inclusive Non-IID Data handling with Decentralized Federated Learning [1.2726316791083532]
Federated Learning (FL) は、機密性のある臨床機械学習のようなユースケースを可能にするための、顕著なプライバシ保護技術として登場した。
FLはデータを所有するリモートデバイスによってトレーニングされたモデルを集約することで動作する。
非IIDデータを扱うために設計された分散FLフレームワークであるMultiConfederated Learningを提案する。
論文 参考訳(メタデータ) (2024-04-20T16:38:26Z) - Scalable Collaborative Learning via Representation Sharing [53.047460465980144]
フェデレートラーニング(FL)とスプリットラーニング(SL)は、データを(デバイス上で)プライベートにしながら協調学習を可能にする2つのフレームワークである。
FLでは、各データ保持者がモデルをローカルにトレーニングし、集約のために中央サーバにリリースする。
SLでは、クライアントは個々のカット層アクティベーション(スマッシュされたデータ)をサーバにリリースし、そのレスポンス(推論とバックの伝搬の両方)を待つ必要があります。
本研究では, クライアントがオンライン知識蒸留を通じて, 対照的な損失を生かして協調する, プライバシ保護機械学習の新しいアプローチを提案する。
論文 参考訳(メタデータ) (2022-11-20T10:49:22Z) - Federated Learning and Meta Learning: Approaches, Applications, and
Directions [94.68423258028285]
本稿では,FL,メタラーニング,フェデレーションメタラーニング(FedMeta)について概観する。
他のチュートリアルと異なり、私たちの目標はFL、メタラーニング、FedMetaの方法論をどのように設計、最適化、進化させ、無線ネットワーク上で応用するかを探ることです。
論文 参考訳(メタデータ) (2022-10-24T10:59:29Z) - Towards Communication-efficient Vertical Federated Learning Training via
Cache-enabled Local Updates [25.85564668511386]
CELU-VFLは,新しい,効率的な垂直学習フレームワークである。
CELU-VFLは、ローカル更新技術を利用して、サードパーティ間の通信ラウンドを減らす。
CELU-VFLは既存の作業の最大6倍高速であることを示す。
論文 参考訳(メタデータ) (2022-07-29T12:10:36Z) - FEDIC: Federated Learning on Non-IID and Long-Tailed Data via Calibrated
Distillation [54.2658887073461]
非IIDデータの処理は、フェデレーション学習における最も難しい問題の1つである。
本稿では, フェデレート学習における非IIDデータとロングテールデータの結合問題について検討し, フェデレート・アンサンブル蒸留と不均衡(FEDIC)という対応ソリューションを提案する。
FEDICはモデルアンサンブルを使用して、非IIDデータでトレーニングされたモデルの多様性を活用する。
論文 参考訳(メタデータ) (2022-04-30T06:17:36Z) - Local Learning Matters: Rethinking Data Heterogeneity in Federated
Learning [61.488646649045215]
フェデレートラーニング(FL)は、クライアントのネットワーク(エッジデバイス)でプライバシ保護、分散ラーニングを行うための有望な戦略である。
論文 参考訳(メタデータ) (2021-11-28T19:03:39Z) - Concept drift detection and adaptation for federated and continual
learning [55.41644538483948]
スマートデバイスは環境から大量のデータを収集することができる。
このデータは機械学習モデルのトレーニングに適しており、その振る舞いを大幅に改善することができる。
そこで本研究では,Concept-Drift-Aware Federated Averagingと呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2021-05-27T17:01:58Z) - Privacy-Preserving Self-Taught Federated Learning for Heterogeneous Data [6.545317180430584]
フェデレーテッド・ラーニング(FL)は、各パーティのローカルデータを用いて、データを他人に公開することなく、ディープラーニングモデルのジョイントトレーニングを可能にするために提案された。
本研究では,前述の問題に対処するために,自己学習型フェデレーション学習と呼ばれるFL手法を提案する。
この方法では、潜在変数だけがモデルトレーニングのために他の当事者に送信され、プライバシはアクティベーション、重み、バイアスのデータとパラメータをローカルに保存することで保持される。
論文 参考訳(メタデータ) (2021-02-11T08:07:51Z) - A Principled Approach to Data Valuation for Federated Learning [73.19984041333599]
フェデレートラーニング(FL)は、分散データソース上で機械学習(ML)モデルをトレーニングする一般的なテクニックである。
Shapley value (SV) はデータ値の概念として多くのデシラタを満たすユニークなペイオフスキームを定義する。
本稿では,FL に対応する SV の変種を提案する。
論文 参考訳(メタデータ) (2020-09-14T04:37:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。