Noise-Assisted Variational Quantum Thermalization
- URL: http://arxiv.org/abs/2111.03935v1
- Date: Sat, 6 Nov 2021 18:24:01 GMT
- Title: Noise-Assisted Variational Quantum Thermalization
- Authors: Jonathan Foldager, Arthur Pesah, Lars Kai Hansen
- Abstract summary: Variational circuits have been proposed for simulating thermal states on quantum computers.
We propose a new algorithm for thermal state preparation by exploiting the noise of quantum circuits.
We show that the ability for our algorithm to learn the thermal state strongly depends on the temperature.
- Score: 4.118741675173778
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Preparing thermal states on a quantum computer can have a variety of
applications, from simulating many-body quantum systems to training machine
learning models. Variational circuits have been proposed for this task on
near-term quantum computers, but several challenges remain, such as finding a
scalable cost-function, avoiding the need of purification, and mitigating noise
effects. We propose a new algorithm for thermal state preparation that tackles
those three challenges by exploiting the noise of quantum circuits. We consider
a variational architecture containing a depolarizing channel after each unitary
layer, with the ability to directly control the level of noise. We derive a
closed-form approximation for the free-energy of such circuit and use it as a
cost function for our variational algorithm. By evaluating our method on a
variety of Hamiltonians and system sizes, we find several systems for which the
thermal state can be approximated with a high fidelity. However, we also show
that the ability for our algorithm to learn the thermal state strongly depends
on the temperature: while a high fidelity can be obtained for high and low
temperatures, we identify a specific range for which the problem becomes more
challenging. We hope that this first study on noise-assisted thermal state
preparation will inspire future research on exploiting noise in variational
algorithms.
Related papers
- A quantum implementation of high-order power method for estimating geometric entanglement of pure states [39.58317527488534]
This work presents a quantum adaptation of the iterative higher-order power method for estimating the geometric measure of entanglement of multi-qubit pure states.
It is executable on current (hybrid) quantum hardware and does not depend on quantum memory.
We study the effect of noise on the algorithm using a simple theoretical model based on the standard depolarising channel.
arXiv Detail & Related papers (2024-05-29T14:40:24Z) - Enhancing Quantum Variational Algorithms with Zero Noise Extrapolation
via Neural Networks [0.4779196219827508]
Variational Quantum Eigensolver (VQE) is a promising algorithm for solving complex quantum problems.
The ubiquitous presence of noise in quantum devices often limits the accuracy and reliability of VQE outcomes.
This research introduces a novel approach by utilizing neural networks for zero noise extrapolation (ZNE) in VQE computations.
arXiv Detail & Related papers (2024-03-10T15:35:41Z) - Robust Extraction of Thermal Observables from State Sampling and
Real-Time Dynamics on Quantum Computers [49.1574468325115]
We introduce a technique that imposes constraints on the density of states, most notably its non-negativity, and show that this way, we can reliably extract Boltzmann weights from noisy time series.
Our work enables the implementation of the time-series algorithm on present-day quantum computers to study finite temperature properties of many-body quantum systems.
arXiv Detail & Related papers (2023-05-30T18:00:05Z) - Quantum Thermal State Preparation [39.91303506884272]
We introduce simple continuous-time quantum Gibbs samplers for simulating quantum master equations.
We construct the first provably accurate and efficient algorithm for preparing certain purified Gibbs states.
Our algorithms' costs have a provable dependence on temperature, accuracy, and the mixing time.
arXiv Detail & Related papers (2023-03-31T17:29:56Z) - Adaptive variational quantum minimally entangled typical thermal states
for finite temperature simulations [0.0]
We describe and benchmark a quantum computing version of the minimally entangled typical thermal states (METTS) algorithm.
The algorithm, which we name AVQMETTS, dynamically generates compact and problem-specific quantum circuits.
arXiv Detail & Related papers (2023-01-06T16:40:06Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Numerical Simulations of Noisy Quantum Circuits for Computational
Chemistry [51.827942608832025]
Near-term quantum computers can calculate the ground-state properties of small molecules.
We show how the structure of the computational ansatz as well as the errors induced by device noise affect the calculation.
arXiv Detail & Related papers (2021-12-31T16:33:10Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Simulating noisy variational quantum eigensolver with local noise models [4.581041382009666]
Variational quantum eigensolver (VQE) is promising to show quantum advantage on near-term noisy-intermediate-scale quantum computers.
One central problem of VQE is the effect of noise, especially the physical noise on realistic quantum computers.
We study systematically the effect of noise for the VQE algorithm, by performing numerical simulations with various local noise models.
arXiv Detail & Related papers (2020-10-28T08:51:59Z) - Variational Simulation of Schwinger's Hamiltonian with Polarisation
Qubits [0.0]
We study the effect of noise on the quantum phase transition in the Schwinger model.
Experiments are built using a free space optical scheme to realize a pair of polarization qubits.
We find that despite the presence of noise one can detect the phase transition of the Schwinger Hamiltonian even for a two-qubit system.
arXiv Detail & Related papers (2020-09-21T00:39:01Z) - Mitigating realistic noise in practical noisy intermediate-scale quantum
devices [0.5872014229110214]
Quantum error mitigation (QEM) is vital for noisy intermediate-scale quantum (NISQ) devices.
Most conventional QEM schemes assume discrete gate-based circuits with noise appearing either before or after each gate.
We show it can be effectively suppressed by a novel QEM method.
arXiv Detail & Related papers (2020-01-14T16:51:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.