論文の概要: Kernel Methods for Multistage Causal Inference: Mediation Analysis and
Dynamic Treatment Effects
- arxiv url: http://arxiv.org/abs/2111.03950v1
- Date: Sat, 6 Nov 2021 19:51:39 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-10 09:24:17.330751
- Title: Kernel Methods for Multistage Causal Inference: Mediation Analysis and
Dynamic Treatment Effects
- Title(参考訳): 多段階因果推論のためのカーネル法:メディエーション解析と動的治療効果
- Authors: Rahul Singh, Liyuan Xu, Arthur Gretton
- Abstract要約: 短地平線上での媒介解析および動的処理効果を考慮したカーネルリッジ回帰推定器を提案する。
そこで我々は, 若年者に対する米国職業部隊プログラムの媒介的および動的治療効果を推定し, シミュレーションを行った。
- 参考スコア(独自算出の注目度): 25.10512040773386
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose kernel ridge regression estimators for mediation analysis and
dynamic treatment effects over short horizons. We allow treatments, covariates,
and mediators to be discrete or continuous, and low, high, or infinite
dimensional. We propose estimators of means, increments, and distributions of
counterfactual outcomes with closed form solutions in terms of kernel matrix
operations. For the continuous treatment case, we prove uniform consistency
with finite sample rates. For the discrete treatment case, we prove root-n
consistency, Gaussian approximation, and semiparametric efficiency. We conduct
simulations then estimate mediated and dynamic treatment effects of the US Job
Corps program for disadvantaged youth.
- Abstract(参考訳): 短地平線上での媒介解析および動的処理効果を考慮したカーネルリッジ回帰推定器を提案する。
我々は、治療、共変量および媒介者を離散的、連続的、低、高、無限次元とすることを許す。
本稿では, カーネル行列演算の手法を用いて, 閉形式解を用いた反実効結果の推定, インクリメント, 分布について提案する。
連続処理の場合、有限サンプルレートで均一な一貫性が証明される。
離散処理の場合,ルートnの整合性,ガウス近似,半パラメトリック効率が証明される。
そこで我々は, 若年者に対する米国職業部隊プログラムの媒介的および動的治療効果を推定するシミュレーションを行った。
関連論文リスト
- Generalization in Kernel Regression Under Realistic Assumptions [41.345620270267446]
共通カーネルや任意の正規化、ノイズ、任意の入力次元、サンプル数に対して厳密な境界を提供する。
以上の結果から,高入力次元における過剰適合,固定次元におけるほぼ誘電過剰適合,正規化回帰に対する明示的な収束率が示唆された。
副産物として、カーネルシステムで訓練されたニューラルネットワークの時間依存境界を得る。
論文 参考訳(メタデータ) (2023-12-26T10:55:20Z) - Solving Kernel Ridge Regression with Gradient Descent for a Non-Constant Kernel [1.5229257192293204]
KRRはデータでは非線形であるがパラメータでは線形である線形リッジ回帰の一般化である。
本稿では,カーネルをトレーニング中に変更した場合の効果について考察する。
帯域幅を減少させることで、よい一般化と組み合わせてゼロトレーニング誤差を達成できることと、二重降下挙動を両立できることを理論的に実証的に示す。
論文 参考訳(メタデータ) (2023-11-03T07:43:53Z) - Stable Nonconvex-Nonconcave Training via Linear Interpolation [51.668052890249726]
本稿では,ニューラルネットワークトレーニングを安定化(大規模)するための原理的手法として,線形アヘッドの理論解析を提案する。
最適化過程の不安定性は、しばしば損失ランドスケープの非単調性によって引き起こされるものであり、非拡張作用素の理論を活用することによって線型性がいかに役立つかを示す。
論文 参考訳(メタデータ) (2023-10-20T12:45:12Z) - Nonparametric estimation of a covariate-adjusted counterfactual
treatment regimen response curve [2.7446241148152253]
治療体制下での平均結果を柔軟に推定することは、パーソナライズされた医療にとって重要なステップである。
本研究では,スムーズな規則応答曲線関数の逆確率重み付き非パラメトリック効率推定器を提案する。
いくつかの有限サンプル特性はシミュレーションによって探索される。
論文 参考訳(メタデータ) (2023-09-28T01:46:24Z) - Curvature-Independent Last-Iterate Convergence for Games on Riemannian
Manifolds [77.4346324549323]
本研究では, 多様体の曲率に依存しないステップサイズが, 曲率非依存かつ直線的最終点収束率を達成することを示す。
我々の知る限りでは、曲率非依存率や/または最終点収束の可能性はこれまでに検討されていない。
論文 参考訳(メタデータ) (2023-06-29T01:20:44Z) - Kernel-based off-policy estimation without overlap: Instance optimality
beyond semiparametric efficiency [53.90687548731265]
本研究では,観測データに基づいて線形関数を推定するための最適手順について検討する。
任意の凸および対称函数クラス $mathcalF$ に対して、平均二乗誤差で有界な非漸近局所ミニマックスを導出する。
論文 参考訳(メタデータ) (2023-01-16T02:57:37Z) - Instance-Dependent Generalization Bounds via Optimal Transport [51.71650746285469]
既存の一般化境界は、現代のニューラルネットワークの一般化を促進する重要な要因を説明することができない。
データ空間における学習予測関数の局所リプシッツ正則性に依存するインスタンス依存の一般化境界を導出する。
ニューラルネットワークに対する一般化境界を実験的に解析し、有界値が有意義であることを示し、トレーニング中の一般的な正規化方法の効果を捉える。
論文 参考訳(メタデータ) (2022-11-02T16:39:42Z) - Adversarial Estimation of Riesz Representers [21.510036777607397]
一般関数空間を用いてRiesz表現子を推定する逆フレームワークを提案する。
臨界半径(Critical radius)と呼ばれる抽象的な量で非漸近平均平方レートを証明し、ニューラルネットワーク、ランダムな森林、カーネルヒルベルト空間を主要なケースとして再現する。
論文 参考訳(メタデータ) (2020-12-30T19:46:57Z) - Kernel Methods for Causal Functions: Dose, Heterogeneous, and
Incremental Response Curves [26.880628841819004]
我々は、一般化されたカーネルリッジ回帰のオリジナル解析により、改良された有限標本率と一様整合性を証明した。
本研究は,本研究の主な成果を,前部および後部ドア基準で同定した反事実分布と因果関数に拡張する。
論文 参考訳(メタデータ) (2020-10-10T00:53:11Z) - Nonparametric Score Estimators [49.42469547970041]
未知分布によって生成されたサンプルの集合からスコアを推定することは確率モデルの推論と学習における基本的なタスクである。
正規化非パラメトリック回帰の枠組みの下で、これらの推定器の統一的なビューを提供する。
カールフリーカーネルと高速収束による計算効果を享受する反復正規化に基づくスコア推定器を提案する。
論文 参考訳(メタデータ) (2020-05-20T15:01:03Z) - Support recovery and sup-norm convergence rates for sparse pivotal
estimation [79.13844065776928]
高次元スパース回帰では、ピボット推定器は最適な正規化パラメータがノイズレベルに依存しない推定器である。
非滑らかで滑らかな単一タスクとマルチタスク正方形ラッソ型推定器に対するミニマックス超ノルム収束率を示す。
論文 参考訳(メタデータ) (2020-01-15T16:11:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。