論文の概要: Curvature-Independent Last-Iterate Convergence for Games on Riemannian
Manifolds
- arxiv url: http://arxiv.org/abs/2306.16617v1
- Date: Thu, 29 Jun 2023 01:20:44 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-30 15:18:39.186130
- Title: Curvature-Independent Last-Iterate Convergence for Games on Riemannian
Manifolds
- Title(参考訳): リーマン多様体上のゲームに対する曲率非依存な最終Iterate Convergence
- Authors: Yang Cai, Michael I. Jordan, Tianyi Lin, Argyris Oikonomou,
Emmanouil-Vasileios Vlatakis-Gkaragkounis
- Abstract要約: 本研究では, 多様体の曲率に依存しないステップサイズが, 曲率非依存かつ直線的最終点収束率を達成することを示す。
我々の知る限りでは、曲率非依存率や/または最終点収束の可能性はこれまでに検討されていない。
- 参考スコア(独自算出の注目度): 77.4346324549323
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Numerous applications in machine learning and data analytics can be
formulated as equilibrium computation over Riemannian manifolds. Despite the
extensive investigation of their Euclidean counterparts, the performance of
Riemannian gradient-based algorithms remain opaque and poorly understood. We
revisit the original scheme of Riemannian gradient descent (RGD) and analyze it
under a geodesic monotonicity assumption, which includes the well-studied
geodesically convex-concave min-max optimization problem as a special case. Our
main contribution is to show that, despite the phenomenon of distance
distortion, the RGD scheme, with a step size that is agnostic to the manifold's
curvature, achieves a curvature-independent and linear last-iterate convergence
rate in the geodesically strongly monotone setting. To the best of our
knowledge, the possibility of curvature-independent rates and/or last-iterate
convergence in the Riemannian setting has not been considered before.
- Abstract(参考訳): 機械学習やデータ解析における多くの応用は、リーマン多様体上の平衡計算として定式化することができる。
ユークリッド的アルゴリズムの広範な研究にもかかわらず、リーマン勾配に基づくアルゴリズムの性能は不透明で理解されていない。
我々は、リーマン勾配降下(RGD)の元々のスキームを再検討し、測地的単調性仮定の下で解析する。
我々の主な貢献は、距離歪み現象にもかかわらず、多様体の曲率に無依存なステップサイズを持つrgdスキームが、測地学的に強い単調設定において曲率非依存で線形なラストイットレート収束率を達成することを示すことである。
我々の知る限りでは、リーマン集合における曲率非依存率やラストイテレート収束は、これまで考えられていなかった。
関連論文リスト
- Riemannian Federated Learning via Averaging Gradient Stream [8.75592575216789]
本稿では,RFedAGS(Federated Averaging Gradient Stream)アルゴリズムの開発と解析を行う。
合成および実世界のデータを用いて数値シミュレーションを行い,提案したRFedAGSの性能を実証した。
論文 参考訳(メタデータ) (2024-09-11T12:28:42Z) - Convergence and Complexity Guarantee for Inexact First-order Riemannian Optimization Algorithms [18.425648833592312]
tBMM は $O(epsilon-2)$ 内の $ilon$-定常点に収束することを示す。
軽度反復の下では、全最適性ギャップが有界である場合、各反復においてサブプロブレムが解かれるときの結果は依然として保たれる。
論文 参考訳(メタデータ) (2024-05-05T22:53:14Z) - Intrinsic Bayesian Cramér-Rao Bound with an Application to Covariance Matrix Estimation [49.67011673289242]
本稿では, 推定パラメータが滑らかな多様体内にある推定問題に対して, 新たな性能境界を提案する。
これはパラメータ多様体の幾何学と推定誤差測度の本質的な概念を誘導する。
論文 参考訳(メタデータ) (2023-11-08T15:17:13Z) - Riemannian stochastic optimization methods avoid strict saddle points [68.80251170757647]
研究中のポリシーは、確率 1 の厳密なサドル点/部分多様体を避けていることを示す。
この結果は、アルゴリズムの極限状態が局所最小値にしかならないことを示すため、重要な正当性チェックを提供する。
論文 参考訳(メタデータ) (2023-11-04T11:12:24Z) - First-Order Algorithms for Min-Max Optimization in Geodesic Metric
Spaces [93.35384756718868]
min-maxアルゴリズムはユークリッド設定で解析されている。
指数関数法 (RCEG) が線形速度で最終収束を補正したことを証明した。
論文 参考訳(メタデータ) (2022-06-04T18:53:44Z) - Differentially private Riemannian optimization [40.23168342389821]
微分プライベートの枠組みを導入する。
現実的なリスクの問題です。
パラメータは a に制約される。
ロックフェラー多様体。
提案手法の有効性をいくつかの応用例で示す。
論文 参考訳(メタデータ) (2022-05-19T12:04:15Z) - Nonconvex Stochastic Scaled-Gradient Descent and Generalized Eigenvector
Problems [98.34292831923335]
オンライン相関解析の問題から,emphStochastic Scaled-Gradient Descent (SSD)アルゴリズムを提案する。
我々はこれらのアイデアをオンライン相関解析に適用し、局所収束率を正規性に比例した最適な1時間スケールのアルゴリズムを初めて導いた。
論文 参考訳(メタデータ) (2021-12-29T18:46:52Z) - Stochastic Zeroth-order Riemannian Derivative Estimation and
Optimization [15.78743548731191]
多様体非線型性の非線型性の難しさを克服するために、ガウス滑らか化関数のオラクル版を提案する。
ニューラルネットワークに対するロボティクスとブラックボックス攻撃に対するブラックボックス剛性制御における,結果によるアルゴリズムの適用性と実世界の応用を実証する。
論文 参考訳(メタデータ) (2020-03-25T06:58:19Z) - From Nesterov's Estimate Sequence to Riemannian Acceleration [52.99237600875452]
我々は、Nesterov氏の推定シーケンス手法の代替解析を開発し、これも独立性を持つ可能性がある。
そして、この解析をリーマン集合に拡張し、非ユークリッド構造による鍵的困難をある計量歪みに局所化する」。
論文 参考訳(メタデータ) (2020-01-24T04:17:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。