Device-independent secret key rates via a post-selected Bell inequality
- URL: http://arxiv.org/abs/2111.04482v1
- Date: Mon, 8 Nov 2021 13:17:24 GMT
- Title: Device-independent secret key rates via a post-selected Bell inequality
- Authors: Sarnava Datta, Hermann Kampermann, Dagmar Bru{\ss}
- Abstract summary: We introduce a DIQKD scenario in which an optimal Bell inequality is constructed from the performed measurement data.
We provide an implementable DIQKD protocol and perform finite-size security key analysis for collective attacks.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In device-independent quantum key distribution (DIQKD) the security is not
based on any assumptions about the intrinsic properties of the devices and the
quantum signals, but on the violation of a Bell inequality. We introduce a
DIQKD scenario in which an optimal Bell inequality is constructed from the
performed measurement data, rather than fixing beforehand a specific Bell
inequality. Our method can be employed in a general way, for any number of
measurement settings and any number of outcomes. We provide an implementable
DIQKD protocol and perform finite-size security key analysis for collective
attacks. We compare our approach with related procedures in the literature and
analyze the robustness of our protocol. We also study the performance of our
method in several Bell scenarios as well as for random measurement settings.
Related papers
- Orthogonal-state-based Measurement Device Independent Quantum Communication [32.244698777387995]
We propose a new protocol of measurement-device-independent quantum secure direct communication and quantum dialogue employing single basis, i.e., Bell basis as decoy qubits for eavesdropping detection.
Our protocols leverage fundamentally distinct resources to close the security loopholes linked to measurement devices, while also effectively doubling the distance for secure direct message transmission.
arXiv Detail & Related papers (2024-09-30T15:57:17Z) - Monte Carlo approach to the evaluation of the security of
device-independent quantum key distribution [0.16317061277456998]
We present a generic study on the information-theoretic security of multi-setting device-independent quantum key distribution protocols.
The approach we develop yields nontrivial upper bounds on the secure key rates, along with the detection efficiencies required upon the measuring devices.
arXiv Detail & Related papers (2023-08-06T06:07:06Z) - Semi-device independent nonlocality certification for near-term quantum
networks [46.37108901286964]
Bell tests are the most rigorous method for verifying entanglement in quantum networks.
If there is any signaling between the parties, then the violation of Bell inequalities can no longer be used.
We propose a semi-device independent protocol that allows us to numerically correct for effects of correlations in experimental probability distributions.
arXiv Detail & Related papers (2023-05-23T14:39:08Z) - Phase-Matching Quantum Key Distribution without Intensity Modulation [25.004151934190965]
We propose a phase-matching quantum key distribution protocol without intensity modulation.
Simulation results show that the transmission distance of our protocol could reach 305 km in telecommunication fiber.
Our protocol provides a promising solution for constructing quantum networks.
arXiv Detail & Related papers (2023-03-21T04:32:01Z) - Data post-processing for the one-way heterodyne protocol under
composable finite-size security [62.997667081978825]
We study the performance of a practical continuous-variable (CV) quantum key distribution protocol.
We focus on the Gaussian-modulated coherent-state protocol with heterodyne detection in a high signal-to-noise ratio regime.
This allows us to study the performance for practical implementations of the protocol and optimize the parameters connected to the steps above.
arXiv Detail & Related papers (2022-05-20T12:37:09Z) - Prospects for device-independent quantum key distribution [0.0]
Device-independent quantum key distribution (DIQKD) aims to achieve secure key distribution with only minimal assumptions.
We present security proofs for several techniques that help to improve the keyrates and noise tolerance of DIQKD.
arXiv Detail & Related papers (2021-11-23T10:28:30Z) - Device-Independent-Quantum-Randomness-Enhanced Zero-Knowledge Proof [25.758352536166502]
Zero-knowledge proof (ZKP) is a fundamental cryptographic primitive that allows a prover to convince a verifier of the validity of a statement.
As an efficient variant of ZKP, non-interactive zero-knowledge proof (NIZKP) adopting the Fiat-Shamir is essential to a wide spectrum of applications.
arXiv Detail & Related papers (2021-11-12T13:36:43Z) - Composably secure data processing for Gaussian-modulated continuous
variable quantum key distribution [58.720142291102135]
Continuous-variable quantum key distribution (QKD) employs the quadratures of a bosonic mode to establish a secret key between two remote parties.
We consider a protocol with homodyne detection in the general setting of composable finite-size security.
In particular, we analyze the high signal-to-noise regime which requires the use of high-rate (non-binary) low-density parity check codes.
arXiv Detail & Related papers (2021-03-30T18:02:55Z) - Finite-key analysis of loss-tolerant quantum key distribution based on
random sampling theory [0.0]
We propose an alternative security analysis of the LT protocol against general attacks.
Our security proof provides considerably higher secret-key rates than the previous finite-key analysis.
arXiv Detail & Related papers (2021-01-29T14:32:09Z) - Improved DIQKD protocols with finite-size analysis [2.940150296806761]
We show that positive randomness is achievable up to depolarizing noise values of $9.33%$, exceeding all previously known noise thresholds.
We also develop a modification to random-key-measurement protocols, using a pre-shared seed followed by a "seed recovery" step.
arXiv Detail & Related papers (2020-12-16T03:04:19Z) - Device-Independent Quantum Key Distribution with Random Key Basis [0.0]
Device-independent quantum key distribution (DIQKD) is the art of using untrusted devices to distribute secret keys in an insecure network.
We show that our protocol significantly improves over the original DIQKD protocol, enabling positive keys in the high noise regime for the first time.
arXiv Detail & Related papers (2020-05-06T09:57:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.