論文の概要: Variational Automatic Curriculum Learning for Sparse-Reward Cooperative
Multi-Agent Problems
- arxiv url: http://arxiv.org/abs/2111.04613v1
- Date: Mon, 8 Nov 2021 16:35:08 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-09 19:31:47.685672
- Title: Variational Automatic Curriculum Learning for Sparse-Reward Cooperative
Multi-Agent Problems
- Title(参考訳): スパース・リワード協調多エージェント問題に対する変分自動学習
- Authors: Jiayu Chen, Yuanxin Zhang, Yuanfan Xu, Huimin Ma, Huazhong Yang,
Jiaming Song, Yu Wang, Yi Wu
- Abstract要約: 協調型マルチエージェント強化学習の課題を解決するために,カリキュラム学習アルゴリズムである変分自動カリキュラム学習(VACL)を導入する。
VACLアルゴリズムはこの変分パラダイムを,タスク拡張とエンティティ進行という2つの実践的要素で実現している。
実験の結果,VACLはスパース・リワード問題の集合を多数のエージェントで解くことがわかった。
- 参考スコア(独自算出の注目度): 42.973910399533054
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce a curriculum learning algorithm, Variational Automatic
Curriculum Learning (VACL), for solving challenging goal-conditioned
cooperative multi-agent reinforcement learning problems. We motivate our
paradigm through a variational perspective, where the learning objective can be
decomposed into two terms: task learning on the current task distribution, and
curriculum update to a new task distribution. Local optimization over the
second term suggests that the curriculum should gradually expand the training
tasks from easy to hard. Our VACL algorithm implements this variational
paradigm with two practical components, task expansion and entity progression,
which produces training curricula over both the task configurations as well as
the number of entities in the task. Experiment results show that VACL solves a
collection of sparse-reward problems with a large number of agents.
Particularly, using a single desktop machine, VACL achieves 98% coverage rate
with 100 agents in the simple-spread benchmark and reproduces the ramp-use
behavior originally shown in OpenAI's hide-and-seek project. Our project
website is at https://sites.google.com/view/vacl-neurips-2021.
- Abstract(参考訳): 目標条件付き協調型マルチエージェント強化学習の課題を解決するために,カリキュラム学習アルゴリズムである変分自動カリキュラム学習(VACL)を導入する。
学習目標を,現在のタスク分布におけるタスク学習と,新しいタスク分布へのカリキュラム更新という2つの用語に分解することができる。
第2項の局所最適化は、カリキュラムが徐々にトレーニングタスクを簡単から困難に拡張すべきであることを示唆している。
我々のVACLアルゴリズムは、タスク拡張とエンティティ進行という2つの実践的なコンポーネントでこの変分パラダイムを実装し、タスク構成とタスク内のエンティティ数の両方に対してトレーニングカリキュラムを生成する。
実験の結果,VACLはスパース逆問題の集合を多数のエージェントで解くことがわかった。
特に、単一のデスクトップマシンを使用して、vaclは、simple-spreadベンチマークで100エージェントによる98%のカバレッジ率を達成し、openaiのhid-and-seekプロジェクトで示されたランプ使用動作を再現する。
プロジェクトのWebサイトはhttps://sites.google.com/view/vacl-neurips-2021。
関連論文リスト
- Towards Skilled Population Curriculum for Multi-Agent Reinforcement
Learning [42.540853953923495]
我々は,カリキュラム学習をマルチエージェント協調に適応させる新しいカリキュラム学習フレームワーク,SPC(Skilled Population Curriculum)を導入する。
具体的には,集団不変のコミュニケーションと階層的スキルセットを学生に提供し,異なるタスクからさまざまなエージェントで協調と行動スキルを学習できるようにする。
また、このマルチエージェント自動カリキュラム教育問題の本質的非定常性を解析し、それに対応する後悔境界を提供する。
論文 参考訳(メタデータ) (2023-02-07T12:30:52Z) - Reinforcement Learning with Success Induced Task Prioritization [68.8204255655161]
本稿では,自動カリキュラム学習のためのフレームワークであるSuccess induced Task Prioritization (SITP)を紹介する。
アルゴリズムはエージェントに最速の学習を提供するタスクの順序を選択する。
我々は,SITPが他のカリキュラム設計手法と一致するか,あるいは上回っていることを実証する。
論文 参考訳(メタデータ) (2022-12-30T12:32:43Z) - NEVIS'22: A Stream of 100 Tasks Sampled from 30 Years of Computer Vision
Research [96.53307645791179]
我々は,100以上の視覚的分類タスクのストリームからなるベンチマークであるNever-Ending VIsual-classification Stream (NEVIS'22)を紹介する。
分類に制限されているにもかかわらず、OCR、テクスチャ分析、シーン認識など、様々なタスクが生成される。
NEVIS'22は、タスクの規模と多様性のために、現在のシーケンシャルな学習アプローチに対して前例のない課題を提起している。
論文 参考訳(メタデータ) (2022-11-15T18:57:46Z) - CLUTR: Curriculum Learning via Unsupervised Task Representation Learning [130.79246770546413]
CLUTRは、タスク表現とカリキュラム学習を2段階最適化に分離する、新しいカリキュラム学習アルゴリズムである。
CLUTRは、CarRacingとナビゲーション環境における一般化とサンプル効率の観点から、原則的かつ一般的なUED手法であるPAIREDよりも優れていることを示す。
論文 参考訳(メタデータ) (2022-10-19T01:45:29Z) - Fast Inference and Transfer of Compositional Task Structures for
Few-shot Task Generalization [101.72755769194677]
本稿では,タスクがサブタスクグラフによって特徴づけられる,数発の強化学習問題として定式化する。
我々のマルチタスクサブタスクグラフ推論器(MTSGI)は、トレーニングタスクから、まず、サブタスクグラフの観点から、一般的なハイレベルなタスク構造を推測する。
提案手法は,2次元グリッドワールドおよび複雑なWebナビゲーション領域において,タスクの共通基盤構造を学習し,活用し,未知のタスクへの適応を高速化する。
論文 参考訳(メタデータ) (2022-05-25T10:44:25Z) - Rectification-based Knowledge Retention for Continual Learning [49.1447478254131]
ディープラーニングモデルは、インクリメンタルな学習環境で訓練されたときに壊滅的な忘れに苦しむ。
タスクインクリメンタル学習問題に対処するための新しいアプローチを提案する。これは、インクリメンタルに到着する新しいタスクに関するモデルをトレーニングすることを含む。
私たちのアプローチは、ゼロショットと非ゼロショットタスクインクリメンタルラーニング設定の両方で使用できます。
論文 参考訳(メタデータ) (2021-03-30T18:11:30Z) - Meta Automatic Curriculum Learning [35.13646854355393]
メタACLの概念を導入し,それをブラックボックスRL学習者の文脈で形式化する。
本稿では,メタACLの初回インスタンス化であるAGAINについて述べる。
論文 参考訳(メタデータ) (2020-11-16T14:56:42Z) - Multi-task Supervised Learning via Cross-learning [102.64082402388192]
我々は,様々なタスクを解くことを目的とした回帰関数の集合を適合させることで,マルチタスク学習と呼ばれる問題を考える。
我々の新しい定式化では、これらの関数のパラメータを2つに分けて、互いに近づきながらタスク固有のドメインで学習する。
これにより、異なるドメインにまたがって収集されたデータが、互いのタスクにおける学習パフォーマンスを改善するのに役立つ、クロス・ファーティライズが促進される。
論文 参考訳(メタデータ) (2020-10-24T21:35:57Z) - Curriculum Learning with Hindsight Experience Replay for Sequential
Object Manipulation Tasks [1.370633147306388]
本稿では,カリキュラム学習とHER(Hindsight Experience Replay)を組み合わせて,逐次的なオブジェクト操作タスクを学習するアルゴリズムを提案する。
このアルゴリズムは、多くのオブジェクト操作タスクに固有のリカレント構造を利用し、元のシミュレーションで学習プロセス全体を各ソースタスクに調整することなく実装する。
論文 参考訳(メタデータ) (2020-08-21T08:59:28Z) - Trying AGAIN instead of Trying Longer: Prior Learning for Automatic
Curriculum Learning [39.489869446313065]
Deep RL(DRL)コミュニティにおける大きな課題は、見えない状況に対して汎用的なエージェントを訓練することである。
そこで本研究では,(1)教師アルゴリズムがDRLエージェントを高探索カリキュラムで学習し,(2)初回から学習した前処理を蒸留して「専門カリキュラム」を生成する2段階のACLアプローチを提案する。
本研究の目的は,最先端技術に対する平均50%の改善を示すことに加えて,複数の学習者を対象としたACL技術の改良を指向した新たな研究方向性の第一の例を示すことである。
論文 参考訳(メタデータ) (2020-04-07T07:30:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。