論文の概要: Nanotubes as Sinks for Quantum Particles
- arxiv url: http://arxiv.org/abs/2111.04648v1
- Date: Mon, 8 Nov 2021 17:17:56 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-08 20:14:17.385834
- Title: Nanotubes as Sinks for Quantum Particles
- Title(参考訳): 量子粒子のシンクとしてのナノチューブ
- Authors: Constantinos Valagiannopoulos
- Abstract要約: いくつかの最適半導電性円筒層を報告し、物質波のトラップを2-3桁向上させる。
同定されたシェルは、チャージポンプや超伝導コンデンサから放射パターンコントローラや物質波レンズへの入射ビームの焦点を含む量子装置の部品として使用できる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Nanotubes with proper thickness, size and texture make ultra-efficient sinks
for the quantum particles traveling into specific background media. Several
optimal semiconducting cylindrical layers are reported to achieve enhancement
in the trapping of matter waves by 2-3 orders of magnitude. The identified
shells can be used as pieces in quantum devices that involve the focusing of
incident beams from charge pumps and superconducting capacitors to radiation
pattern controllers and matter-wave lenses.
- Abstract(参考訳): 厚み、サイズ、テクスチャが適当なナノチューブは、特定の背景媒質中を移動する量子粒子の超効率的なシンクとなる。
いくつかの最適半導電性円筒層を報告し, 物質波の捕捉率を2-3桁向上させた。
同定されたシェルは、チャージポンプや超伝導コンデンサから放射パターンコントローラや物質波レンズへの入射ビームの焦点を含む量子装置の部品として使用できる。
関連論文リスト
- Erbium emitters in commercially fabricated nanophotonic silicon
waveguides [0.0]
エルビウムドーパツを市販低損失導波路に確実に組み込むことができることを示す。
我々の発見は、ウェーハスケールで製造できる長寿命量子記憶への重要なステップである。
論文 参考訳(メタデータ) (2023-07-26T07:58:05Z) - High-efficiency microwave-optical quantum transduction based on a cavity
electro-optic superconducting system with long coherence time [52.77024349608834]
マイクロ波と光子の間の周波数変換は、超伝導量子プロセッサ間のリンクを作るための鍵となる技術である。
本稿では, 長コヒーレンス時間超伝導電波周波数(SRF)キャビティに基づくマイクロ波光プラットフォームを提案する。
2つのリモート量子システム間の密接な絡み合い発生の忠実さは、低マイクロ波損失により向上することを示す。
論文 参考訳(メタデータ) (2022-06-30T17:57:37Z) - Strong coupling between a photon and a hole spin in silicon [0.0]
超伝導マイクロ波共振器のフォトニックモードへのスピンの結合は、高速な非破壊読み出しと長距離のオンチップ接続を可能にする。
超伝導共振器におけるマイクロ波光子と、ファクトリー互換のMOS製造プロセスから発行されたシリコンベースの二重量子ドットにおけるホールスピンとの強い結合を実証した。
論文 参考訳(メタデータ) (2022-06-28T15:26:35Z) - Tuneable Gaussian entanglement in levitated nanoparticle arrays [0.0]
複数共振器モードへのコヒーレント散乱を用いた複数の浮遊ナノ粒子の運動定常状態の絡み合いを生成する手法を提案する。
提案手法は,高度な量子センシングプロトコルと多体量子シミュレーションのために,複数の浮遊ナノ粒子の複雑な量子状態を生成する方法である。
論文 参考訳(メタデータ) (2022-06-15T08:19:36Z) - Near-Field Terahertz Nanoscopy of Coplanar Microwave Resonators [61.035185179008224]
超伝導量子回路は、主要な量子コンピューティングプラットフォームの一つである。
超伝導量子コンピューティングを実用上重要な点に進めるためには、デコヒーレンスに繋がる物質不完全性を特定し、対処することが重要である。
ここでは、テラヘルツ走査近接場光学顕微鏡を用いて、シリコン上の湿式エッチングアルミニウム共振器の局所誘電特性とキャリア濃度を調査する。
論文 参考訳(メタデータ) (2021-06-24T11:06:34Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
量子電磁力学は、導波路で伝播する光子と局在量子エミッタとの相互作用を扱う。
我々は、誘導光子と順序配列に焦点をあて、超放射および準放射状態、束縛光子状態、および有望な量子情報アプリケーションとの量子相関をもたらす。
論文 参考訳(メタデータ) (2021-03-11T17:49:52Z) - Tunable quantum photonics platform based on fiber-cavity enhanced single
photon emission from two-dimensional hBN [52.915502553459724]
本研究では, 化学気相蒸着により成長する多層hBNの欠陥中心と繊維系ファブリペロキャビティからなるハイブリッドシステムを提案する。
キャビティファンネリングにより, 最大50倍, 等強度のライン幅狭帯域化を実現した。
我々の研究は、実用的な量子技術において、繊維ベースのキャビティと結合した2次元材料を配置する上で重要なマイルストーンとなる。
論文 参考訳(メタデータ) (2020-06-23T14:20:46Z) - Waveguide Bandgap Engineering with an Array of Superconducting Qubits [101.18253437732933]
局所周波数制御による8つの超伝導トランスモン量子ビットからなるメタマテリアルを実験的に検討した。
極性バンドギャップの出現とともに,超・亜ラジカル状態の形成を観察する。
この研究の回路は、1ビットと2ビットの実験を、完全な量子メタマテリアルへと拡張する。
論文 参考訳(メタデータ) (2020-06-05T09:27:53Z) - Quantum electromechanics with levitated nanoparticles [0.0]
離散遷移を持つ原子系とは対照的に、ナノ粒子は事実上連続的な吸収スペクトルを示す。
本稿では,いくつかの浮遊ナノ粒子間の運動量子重ね合わせと絡み合いの発生と読み出しのためのパルス方式を提案する。
論文 参考訳(メタデータ) (2020-05-28T13:52:42Z) - Coupling colloidal quantum dots to gap waveguides [62.997667081978825]
単一光子エミッタと集積フォトニック回路の結合は、量子情報科学や他のナノフォトニック応用に関係した新たな話題である。
我々は、コロイド量子ドットのハイブリッド系と窒化ケイ素導波路系のギャップモードとのカップリングについて検討した。
論文 参考訳(メタデータ) (2020-03-30T21:18:27Z) - Chip-based superconducting traps for levitation of micrometer-sized
particles in the Meissner state [0.07299136044827463]
マイスナー状態のマイクロメートルサイズの超伝導粒子を浮揚可能な2つのチップベース超伝導トラップアーキテクチャの詳細な解析を行った。
これらのアーキテクチャは、より大きな粒子を用いた新しい量子実験や、前例のない感度の力と加速度センサーの実行に適している。
我々の数値実験は,マイスナー状態の微小粒子をチップベース超伝導トラップで浮き彫りにすることを目的とした将来の実験を導くものである。
論文 参考訳(メタデータ) (2020-02-10T15:31:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。