Equity and Privacy: More Than Just a Tradeoff
- URL: http://arxiv.org/abs/2111.04671v1
- Date: Mon, 8 Nov 2021 17:39:32 GMT
- Title: Equity and Privacy: More Than Just a Tradeoff
- Authors: David Pujol, Ashwin Machanavajjhala
- Abstract summary: Recent work has shown that privacy preserving data publishing can introduce different levels of utility across different population groups.
Will marginal populations see disproportionately less utility from privacy technology?
If there is an inequity how can we address it?
- Score: 10.545898004301323
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While the entire field of privacy preserving data analytics is focused on the
privacy-utility tradeoff, recent work has shown that privacy preserving data
publishing can introduce different levels of utility across different
population groups. It is important to understand this new tradeoff between
privacy and equity as privacy technology is being deployed in situations where
the data products will be used for research and policy making. Will marginal
populations see disproportionately less utility from privacy technology? If
there is an inequity how can we address it?
Related papers
- FT-PrivacyScore: Personalized Privacy Scoring Service for Machine Learning Participation [4.772368796656325]
In practice, controlled data access remains a mainstream method for protecting data privacy in many industrial and research environments.
We developed the demo prototype FT-PrivacyScore to show that it's possible to efficiently and quantitatively estimate the privacy risk of participating in a model fine-tuning task.
arXiv Detail & Related papers (2024-10-30T02:41:26Z) - Models Matter: Setting Accurate Privacy Expectations for Local and Central Differential Privacy [14.40391109414476]
We design and evaluate new explanations of differential privacy for the local and central models.
We find that consequences-focused explanations in the style of privacy nutrition labels are a promising approach for setting accurate privacy expectations.
arXiv Detail & Related papers (2024-08-16T01:21:57Z) - A Unified View of Differentially Private Deep Generative Modeling [60.72161965018005]
Data with privacy concerns comes with stringent regulations that frequently prohibited data access and data sharing.
Overcoming these obstacles is key for technological progress in many real-world application scenarios that involve privacy sensitive data.
Differentially private (DP) data publishing provides a compelling solution, where only a sanitized form of the data is publicly released.
arXiv Detail & Related papers (2023-09-27T14:38:16Z) - Position: Considerations for Differentially Private Learning with Large-Scale Public Pretraining [75.25943383604266]
We question whether the use of large Web-scraped datasets should be viewed as differential-privacy-preserving.
We caution that publicizing these models pretrained on Web data as "private" could lead to harm and erode the public's trust in differential privacy as a meaningful definition of privacy.
We conclude by discussing potential paths forward for the field of private learning, as public pretraining becomes more popular and powerful.
arXiv Detail & Related papers (2022-12-13T10:41:12Z) - Momentum Gradient Descent Federated Learning with Local Differential
Privacy [10.60240656423935]
In the big data era, the privacy of personal information has been more pronounced.
In this article, we propose integrating federated learning and local differential privacy with momentum gradient descent to improve the performance of machine learning models.
arXiv Detail & Related papers (2022-09-28T13:30:38Z) - Algorithms with More Granular Differential Privacy Guarantees [65.3684804101664]
We consider partial differential privacy (DP), which allows quantifying the privacy guarantee on a per-attribute basis.
In this work, we study several basic data analysis and learning tasks, and design algorithms whose per-attribute privacy parameter is smaller that the best possible privacy parameter for the entire record of a person.
arXiv Detail & Related papers (2022-09-08T22:43:50Z) - The Privacy Onion Effect: Memorization is Relative [76.46529413546725]
We show an Onion Effect of memorization: removing the "layer" of outlier points that are most vulnerable exposes a new layer of previously-safe points to the same attack.
It suggests that privacy-enhancing technologies such as machine unlearning could actually harm the privacy of other users.
arXiv Detail & Related papers (2022-06-21T15:25:56Z) - Learning With Differential Privacy [3.618133010429131]
Differential privacy comes to the rescue with a proper promise of protection against leakage.
It uses a randomized response technique at the time of collection of the data which promises strong privacy with better utility.
arXiv Detail & Related papers (2020-06-10T02:04:13Z) - A vision for global privacy bridges: Technical and legal measures for
international data markets [77.34726150561087]
Despite data protection laws and an acknowledged right to privacy, trading personal information has become a business equated with "trading oil"
An open conflict is arising between business demands for data and a desire for privacy.
We propose and test a vision of a personal information market with privacy.
arXiv Detail & Related papers (2020-05-13T13:55:50Z) - Beyond privacy regulations: an ethical approach to data usage in
transportation [64.86110095869176]
We describe how Federated Machine Learning can be applied to the transportation sector.
We see Federated Learning as a method that enables us to process privacy-sensitive data, while respecting customer's privacy.
arXiv Detail & Related papers (2020-04-01T15:10:12Z) - Dis-Empowerment Online: An Investigation of Privacy-Sharing Perceptions
& Method Preferences [6.09170287691728]
We find that perception of privacy empowerment differs from that of sharing across dimensions of meaningfulness, competence and choice.
We find similarities and differences in privacy method preference between the US, UK and Germany.
By mapping the perception of privacy dis-empowerment into patterns of privacy behavior online, this paper provides an important foundation for future research.
arXiv Detail & Related papers (2020-03-19T19:17:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.