論文の概要: Efficiently Learning Any One Hidden Layer ReLU Network From Queries
- arxiv url: http://arxiv.org/abs/2111.04727v1
- Date: Mon, 8 Nov 2021 18:59:40 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-09 17:49:01.618799
- Title: Efficiently Learning Any One Hidden Layer ReLU Network From Queries
- Title(参考訳): クエリーから隠されたレイヤReLUネットワークを効率よく学習する
- Authors: Sitan Chen, Adam R Klivans, Raghu Meka
- Abstract要約: ネットワークへのブラックボックスアクセスを提供するニューラルネットワークアクティベーションを任意の1つの隠蔽層で学習するアルゴリズムを初めて提供する。
最悪のネットワークであっても、完全時間で効率を保証できるのはこれが初めてです。
- 参考スコア(独自算出の注目度): 27.428198343906352
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Model extraction attacks have renewed interest in the classic problem of
learning neural networks from queries. In this work we give the first
polynomial-time algorithm for learning arbitrary one hidden layer neural
networks activations provided black-box access to the network. Formally, we
show that if $F$ is an arbitrary one hidden layer neural network with ReLU
activations, there is an algorithm with query complexity and running time that
is polynomial in all parameters that outputs a network $F'$ achieving low
square loss relative to $F$ with respect to the Gaussian measure. While a
number of works in the security literature have proposed and empirically
demonstrated the effectiveness of certain algorithms for this problem, ours is
the first with fully polynomial-time guarantees of efficiency even for
worst-case networks (in particular our algorithm succeeds in the
overparameterized setting).
- Abstract(参考訳): モデル抽出攻撃は、クエリからニューラルネットワークを学習する古典的な問題に新たな関心を寄せている。
本研究では,ネットワークへのブラックボックスアクセスを提供する隠れレイヤニューラルネットワークの任意のアクティベーションを学習するための,最初の多項式時間アルゴリズムを提案する。
形式的には、$f$がreluアクティベーションを持つ任意の1つの隠れ層ニューラルネットワークであれば、ガウス測度に対して$f$に対して低平方損失を達成するネットワーク$f'$を出力するすべてのパラメータの多項式であるクエリ複雑性と実行時間を持つアルゴリズムが存在する。
セキュリティ文献における多くの研究がこの問題に対する特定のアルゴリズムの有効性を実証的に提案し実証してきたが、最悪の場合のネットワークでも効率の多項式時間保証は初めてである(特に我々のアルゴリズムは過度なパラメータ設定で成功している)。
関連論文リスト
- Efficient SGD Neural Network Training via Sublinear Activated Neuron
Identification [22.361338848134025]
本稿では,ReLUの活性化をシフトする2層ニューラルネットワークについて,幾何学的探索によるサブ線形時間における活性化ニューロンの同定を可能にする。
また、我々のアルゴリズムは、係数ノルム上界$M$とエラー項$epsilon$の2次ネットワークサイズで$O(M2/epsilon2)$時間に収束できることを示す。
論文 参考訳(メタデータ) (2023-07-13T05:33:44Z) - Globally Optimal Training of Neural Networks with Threshold Activation
Functions [63.03759813952481]
しきい値アクティベートを伴うディープニューラルネットワークの重み劣化正規化学習問題について検討した。
ネットワークの特定の層でデータセットを破砕できる場合に、簡易な凸最適化の定式化を導出する。
論文 参考訳(メタデータ) (2023-03-06T18:59:13Z) - Robust Training and Verification of Implicit Neural Networks: A
Non-Euclidean Contractive Approach [64.23331120621118]
本稿では,暗黙的ニューラルネットワークのトレーニングとロバスト性検証のための理論的および計算的枠組みを提案する。
組込みネットワークを導入し、組込みネットワークを用いて、元のネットワークの到達可能な集合の超近似として$ell_infty$-normボックスを提供することを示す。
MNISTデータセット上で暗黙的なニューラルネットワークをトレーニングするためにアルゴリズムを適用し、我々のモデルの堅牢性と、文献における既存のアプローチを通じてトレーニングされたモデルを比較する。
論文 参考訳(メタデータ) (2022-08-08T03:13:24Z) - Algorithms for Efficiently Learning Low-Rank Neural Networks [12.916132936159713]
低ランクニューラルネットワークの学習アルゴリズムについて検討する。
単層ReLUネットワークに最適な低ランク近似を学習するアルゴリズムを提案する。
低ランク$textitdeep$ネットワークをトレーニングするための新しい低ランクフレームワークを提案する。
論文 参考訳(メタデータ) (2022-02-02T01:08:29Z) - Learning Contextual Bandits Through Perturbed Rewards [107.6210145983805]
標準正規性条件下では、$tildeO(tildedsqrtT)$ regret上界が達成可能であることを示す。
明示的な探索の必要性を排除するために、ニューラルネットワークを更新する際の報酬を混乱させます。
論文 参考訳(メタデータ) (2022-01-24T19:10:22Z) - Neural networks with linear threshold activations: structure and
algorithms [1.795561427808824]
クラス内で表現可能な関数を表現するのに、2つの隠れたレイヤが必要であることを示す。
また、クラス内の任意の関数を表すのに必要なニューラルネットワークのサイズについて、正確な境界を与える。
我々は,線形しきい値ネットワークと呼ばれるニューラルネットワークの新たなクラスを提案する。
論文 参考訳(メタデータ) (2021-11-15T22:33:52Z) - Efficient Algorithms for Learning Depth-2 Neural Networks with General
ReLU Activations [27.244958998196623]
一般のReLUアクティベーションを用いた未知の深度2フィードフォワードニューラルネットワークを学習するための時間とサンプル効率のアルゴリズムを提案する。
特に、f(x) = amathsfTsigma(WmathsfTx+b)$, ここで$x$はガウス分布から引き出され、$sigma(t) := max(t,0)$はReLU活性化である。
論文 参考訳(メタデータ) (2021-07-21T17:06:03Z) - An Empirical Study of Derivative-Free-Optimization Algorithms for
Targeted Black-Box Attacks in Deep Neural Networks [8.368543987898732]
本稿では,BOBYQAに基づく新しいアルゴリズムの導入とともに,既存のDFOベースの4つのアルゴリズムについて考察する。
我々は、これらのアルゴリズムを様々な設定で比較し、それらを誤分類した画像の数に応じて比較する。
実験では、敵の例を見つける確率が、使用されるアルゴリズムと攻撃の設定の両方に依存するかを明らかにする。
論文 参考訳(メタデータ) (2020-12-03T13:32:20Z) - Neural Contextual Bandits with Deep Representation and Shallow
Exploration [105.8099566651448]
本稿では,深部ReLUニューラルネットワークの最後の隠蔽層を用いて,原特徴ベクトルを変換する新しい学習アルゴリズムを提案する。
既存のニューラルネットワークと比較して、ディープニューラルネットワークの最後の層でのみ探索する必要があるため、我々のアプローチは計算的にはるかに効率的です。
論文 参考訳(メタデータ) (2020-12-03T09:17:55Z) - Neural Thompson Sampling [94.82847209157494]
本稿では,ニューラルトンプソンサンプリング(Neural Thompson Smpling)と呼ばれる新しいアルゴリズムを提案する。
我々のアルゴリズムの中核は報酬の新たな後部分布であり、その平均はニューラルネットワーク近似器であり、その分散は対応するニューラルネットワークのニューラル・タンジェントな特徴に基づいて構築されている。
論文 参考訳(メタデータ) (2020-10-02T07:44:09Z) - ESPN: Extremely Sparse Pruned Networks [50.436905934791035]
簡単な反復マスク探索法により,非常に深いネットワークの最先端の圧縮を実現することができることを示す。
本アルゴリズムは,シングルショット・ネットワーク・プルーニング法とロッテ・ティケット方式のハイブリッド・アプローチを示す。
論文 参考訳(メタデータ) (2020-06-28T23:09:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。