論文の概要: How to Train Your Neural Network: A Comparative Evaluation
- arxiv url: http://arxiv.org/abs/2111.04949v1
- Date: Tue, 9 Nov 2021 04:24:42 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-10 14:35:43.425811
- Title: How to Train Your Neural Network: A Comparative Evaluation
- Title(参考訳): ニューラルネットワークのトレーニング方法: 比較評価
- Authors: Shu-Huai Lin, Daniel Nichols, Siddharth Singh, Abhinav Bhatele
- Abstract要約: 大規模分散ディープラーニングのための最先端フレームワークについて論じ,比較する。
大規模画像と言語訓練における性能を比較した実験結果を示す。
この結果に基づいて,性能を阻害する各フレームワークのアルゴリズム的部分と実装的部分について議論する。
- 参考スコア(独自算出の注目度): 1.3654846342364304
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The field of deep learning has witnessed a remarkable shift towards extremely
compute- and memory-intensive neural networks. These newer larger models have
enabled researchers to advance state-of-the-art tools across a variety of
fields. This phenomenon has spurred the development of algorithms for
distributed training of neural networks over a larger number of hardware
accelerators. In this paper, we discuss and compare current state-of-the-art
frameworks for large scale distributed deep learning. First, we survey current
practices in distributed learning and identify the different types of
parallelism used. Then, we present empirical results comparing their
performance on large image and language training tasks. Additionally, we
address their statistical efficiency and memory consumption behavior. Based on
our results, we discuss algorithmic and implementation portions of each
framework which hinder performance.
- Abstract(参考訳): ディープラーニングの分野は、超計算とメモリ集約型ニューラルネットワークへの顕著なシフトを目撃している。
これらのより大型のモデルにより、研究者は様々な分野にわたる最先端のツールを開発できるようになった。
この現象は、多数のハードウェアアクセラレータ上でニューラルネットワークの分散トレーニングのためのアルゴリズムの開発を促した。
本稿では,大規模分散ディープラーニングのための最先端フレームワークについて論じ,比較する。
まず、分散学習における現在のプラクティスを調査し、使用するさまざまなタイプの並列性を特定します。
次に,大規模画像処理と言語学習タスクでの性能を比較する実験結果を示す。
さらに,その統計効率とメモリ消費挙動について述べる。
この結果に基づいて,性能を阻害する各フレームワークのアルゴリズム的および実装的部分について議論する。
関連論文リスト
- Towards Scalable and Versatile Weight Space Learning [51.78426981947659]
本稿では,重み空間学習におけるSANEアプローチを紹介する。
ニューラルネットワーク重みのサブセットの逐次処理に向けて,超表現の概念を拡張した。
論文 参考訳(メタデータ) (2024-06-14T13:12:07Z) - Deep Learning for Causal Inference: A Comparison of Architectures for Heterogeneous Treatment Effect Estimation [0.5249805590164902]
本稿では,ベイズカウサルフォレストアルゴリズムのニューラルネットワーク実装について述べる。
ストレスが睡眠に与える影響を調べるデータセットに本手法を適用した。
論文 参考訳(メタデータ) (2024-05-06T02:54:53Z) - The Multiple Subnetwork Hypothesis: Enabling Multidomain Learning by
Isolating Task-Specific Subnetworks in Feedforward Neural Networks [0.0]
我々は,未使用の重み付きネットワークがその後のタスクを学習するための方法論とネットワーク表現構造を同定する。
提案手法を用いてトレーニングされたネットワークは,タスクのパフォーマンスを犠牲にすることなく,あるいは破滅的な忘れを伴わずに,複数のタスクを学習できることを示す。
論文 参考訳(メタデータ) (2022-07-18T15:07:13Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
ディープニューラルネットワークと互換性のあるアクティブな学習アルゴリズムの必要性が高まっている。
本稿では,ニューラルネットワークのための抽出可能かつ高性能な能動学習アルゴリズムBAITを紹介する。
論文 参考訳(メタデータ) (2021-06-17T17:26:31Z) - Collaborative Method for Incremental Learning on Classification and
Generation [32.07222897378187]
本稿では,ニューラルネットワークを用いたインクリメンタルなクラス学習のための新しいアルゴリズム,Incrmental Class Learning with Attribute Sharing (ICLAS)を導入する。
そのコンポーネントの1つであるincGANは、トレーニングデータよりも多彩な画像を生成することができる。
データ不足の困難な環境下で、ICLASは段階的に分類と生成ネットワークを訓練する。
論文 参考訳(メタデータ) (2020-10-29T06:34:53Z) - Exploring Flip Flop memories and beyond: training recurrent neural
networks with key insights [0.0]
本研究では,時間処理タスク,特に3ビットフリップフロップメモリの実装について検討する。
得られたネットワークは、可視化および分析ツールの配列によって支援され、ダイナミックスを解明するために慎重に分析される。
論文 参考訳(メタデータ) (2020-10-15T16:25:29Z) - Reservoir Memory Machines as Neural Computers [70.5993855765376]
微分可能なニューラルネットワークは、干渉することなく明示的なメモリで人工ニューラルネットワークを拡張する。
我々は、非常に効率的に訓練できるモデルを用いて、微分可能なニューラルネットワークの計算能力を実現する。
論文 参考訳(メタデータ) (2020-09-14T12:01:30Z) - Spiking Neural Networks Hardware Implementations and Challenges: a
Survey [53.429871539789445]
スパイキングニューラルネットワークは、ニューロンとシナプスの操作原理を模倣する認知アルゴリズムである。
スパイキングニューラルネットワークのハードウェア実装の現状について述べる。
本稿では,これらのイベント駆動アルゴリズムの特性をハードウェアレベルで活用するための戦略について論じる。
論文 参考訳(メタデータ) (2020-05-04T13:24:00Z) - Understanding the Effects of Data Parallelism and Sparsity on Neural
Network Training [126.49572353148262]
ニューラルネットワークトレーニングにおける2つの要因として,データ並列性と疎性について検討する。
有望なメリットにもかかわらず、ニューラルネットワークトレーニングに対する彼らの影響を理解することは、依然として明白である。
論文 参考訳(メタデータ) (2020-03-25T10:49:22Z) - The large learning rate phase of deep learning: the catapult mechanism [50.23041928811575]
問題解決可能なトレーニングダイナミクスを備えたニューラルネットワークのクラスを提示する。
現実的なディープラーニング環境において,モデルの予測とトレーニングのダイナミクスとの間には,よい一致がある。
我々の結果は、異なる学習率でトレーニングされたモデルの特性に光を当てたと信じています。
論文 参考訳(メタデータ) (2020-03-04T17:52:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。