論文の概要: Deep Learning for Causal Inference: A Comparison of Architectures for Heterogeneous Treatment Effect Estimation
- arxiv url: http://arxiv.org/abs/2405.03130v1
- Date: Mon, 6 May 2024 02:54:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-07 14:54:58.396641
- Title: Deep Learning for Causal Inference: A Comparison of Architectures for Heterogeneous Treatment Effect Estimation
- Title(参考訳): 因果推論のためのディープラーニング:不均一処理効果推定のためのアーキテクチャの比較
- Authors: Demetrios Papakostas, Andrew Herren, P. Richard Hahn, Francisco Castillo,
- Abstract要約: 本稿では,ベイズカウサルフォレストアルゴリズムのニューラルネットワーク実装について述べる。
ストレスが睡眠に与える影響を調べるデータセットに本手法を適用した。
- 参考スコア(独自算出の注目度): 0.5249805590164902
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Causal inference has gained much popularity in recent years, with interests ranging from academic, to industrial, to educational, and all in between. Concurrently, the study and usage of neural networks has also grown profoundly (albeit at a far faster rate). What we aim to do in this blog write-up is demonstrate a Neural Network causal inference architecture. We develop a fully connected neural network implementation of the popular Bayesian Causal Forest algorithm, a state of the art tree based method for estimating heterogeneous treatment effects. We compare our implementation to existing neural network causal inference methodologies, showing improvements in performance in simulation settings. We apply our method to a dataset examining the effect of stress on sleep.
- Abstract(参考訳): 因果推論は近年広く普及しており、学術的、工業的、教育的、そしてその中間にあるものまで幅広い関心が寄せられている。
同時に、ニューラルネットワークの研究と利用も大きく成長した(より高速な速度ではあるものの)。
このブログの書き込みで私たちが目指すのは、ニューラルネットワーク因果推論アーキテクチャの実証です。
我々は、不均一な処理効果を推定するための最先端木に基づく手法であるBayesian Causal Forestアルゴリズムの完全なニューラルネットワーク実装を開発する。
我々は,既存のニューラルネットワーク因果推論手法と比較し,シミュレーション設定の性能改善を示す。
ストレスが睡眠に与える影響を調べるデータセットに本手法を適用した。
関連論文リスト
- Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
本稿では,ニューラルネットワークをパラメータの計算グラフとして表現することを提案する。
我々のアプローチは、ニューラルネットワークグラフを多種多様なアーキテクチャでエンコードする単一モデルを可能にする。
本稿では,暗黙的ニューラル表現の分類や編集など,幅広いタスクにおける本手法の有効性を示す。
論文 参考訳(メタデータ) (2024-03-18T18:01:01Z) - Addressing caveats of neural persistence with deep graph persistence [54.424983583720675]
神経の持続性に影響を与える主な要因は,ネットワークの重みのばらつきと大きな重みの空間集中である。
単一層ではなく,ニューラルネットワーク全体へのニューラルネットワークの持続性に基づくフィルタリングの拡張を提案する。
これにより、ネットワーク内の永続的なパスを暗黙的に取り込み、分散に関連する問題を緩和するディープグラフの永続性測定が得られます。
論文 参考訳(メタデータ) (2023-07-20T13:34:11Z) - Distilled Neural Networks for Efficient Learning to Rank [0.0]
本稿では, 蒸留法, プルーニング法, 高速行列乗算法を組み合わせて, ニューラルスコアリング時間を高速化する手法を提案する。
2つの公開学習からランクへのデータセットに関する総合的な実験は、新しいアプローチで生成されたニューラルネットワークが、有効性と効率のトレードオフのあらゆる点で競合していることを示している。
論文 参考訳(メタデータ) (2022-02-22T08:40:18Z) - How to Train Your Neural Network: A Comparative Evaluation [1.3654846342364304]
大規模分散ディープラーニングのための最先端フレームワークについて論じ,比較する。
大規模画像と言語訓練における性能を比較した実験結果を示す。
この結果に基づいて,性能を阻害する各フレームワークのアルゴリズム的部分と実装的部分について議論する。
論文 参考訳(メタデータ) (2021-11-09T04:24:42Z) - Wide Neural Networks Forget Less Catastrophically [39.907197907411266]
ニューラルネットワークアーキテクチャの"幅"が破滅的忘れに及ぼす影響について検討する。
ネットワークの学習力学を様々な観点から研究する。
論文 参考訳(メタデータ) (2021-10-21T23:49:23Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
本稿では,データ生成プロセスの根底にある因果構造を素早く識別する能動的介入ターゲット機構を提案する。
本手法は,ランダムな介入ターゲティングと比較して,要求される対話回数を大幅に削減する。
シミュレーションデータから実世界のデータまで,複数のベンチマークにおいて優れた性能を示す。
論文 参考訳(メタデータ) (2021-09-06T13:10:37Z) - Analytically Tractable Inference in Deep Neural Networks [0.0]
Tractable Approximate Inference (TAGI)アルゴリズムは、浅いフルコネクテッドニューラルネットワークのバックプロパゲーションに対する実行可能でスケーラブルな代替手段であることが示された。
従来のディープニューラルネットワークアーキテクチャをトレーニングするために、TAGIがバックプロパゲーションのパフォーマンスとどのように一致するか、または上回るかを実証しています。
論文 参考訳(メタデータ) (2021-03-09T14:51:34Z) - Developing Constrained Neural Units Over Time [81.19349325749037]
本稿では,既存のアプローチと異なるニューラルネットワークの定義方法に焦点をあてる。
ニューラルネットワークの構造は、データとの相互作用にも拡張される制約の特別なクラスによって定義される。
提案した理論は時間領域にキャストされ, データを順序づけられた方法でネットワークに提示する。
論文 参考訳(メタデータ) (2020-09-01T09:07:25Z) - Network Diffusions via Neural Mean-Field Dynamics [52.091487866968286]
本稿では,ネットワーク上の拡散の推論と推定のための新しい学習フレームワークを提案する。
本研究の枠組みは, ノード感染確率の正確な進化を得るために, モリ・ズワンジッヒ形式から導かれる。
我々のアプローチは、基礎となる拡散ネットワークモデルのバリエーションに対して多用途で堅牢である。
論文 参考訳(メタデータ) (2020-06-16T18:45:20Z) - Understanding the Effects of Data Parallelism and Sparsity on Neural
Network Training [126.49572353148262]
ニューラルネットワークトレーニングにおける2つの要因として,データ並列性と疎性について検討する。
有望なメリットにもかかわらず、ニューラルネットワークトレーニングに対する彼らの影響を理解することは、依然として明白である。
論文 参考訳(メタデータ) (2020-03-25T10:49:22Z) - Understanding and mitigating gradient pathologies in physics-informed
neural networks [2.1485350418225244]
この研究は、物理システムの結果を予測し、ノイズの多いデータから隠れた物理を発見するための物理情報ニューラルネットワークの有効性に焦点を当てる。
本稿では,モデル学習中の勾配統計を利用して,複合損失関数の異なる項間の相互作用のバランスをとる学習速度アニーリングアルゴリズムを提案する。
また、そのような勾配に耐性のある新しいニューラルネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2020-01-13T21:23:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。