論文の概要: Does Thermal data make the detection systems more reliable?
- arxiv url: http://arxiv.org/abs/2111.05191v1
- Date: Tue, 9 Nov 2021 15:04:34 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-10 14:49:09.618498
- Title: Does Thermal data make the detection systems more reliable?
- Title(参考訳): 熱データは検出システムの信頼性を高めるか?
- Authors: Shruthi Gowda, Bahram Zonooz, Elahe Arani
- Abstract要約: マルチモーダル協調フレームワークに基づく包括的検知システムを提案する。
このフレームワークは、RGB(ビジュアルカメラから)と熱(赤外線カメラから)の両方のデータから学習する。
実験の結果,精度の向上は名目上はいるものの,難易度と難易度は高いことがわかった。
- 参考スコア(独自算出の注目度): 1.2891210250935146
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Deep learning-based detection networks have made remarkable progress in
autonomous driving systems (ADS). ADS should have reliable performance across a
variety of ambient lighting and adverse weather conditions. However, luminance
degradation and visual obstructions (such as glare, fog) result in poor quality
images by the visual camera which leads to performance decline. To overcome
these challenges, we explore the idea of leveraging a different data modality
that is disparate yet complementary to the visual data. We propose a
comprehensive detection system based on a multimodal-collaborative framework
that learns from both RGB (from visual cameras) and thermal (from Infrared
cameras) data. This framework trains two networks collaboratively and provides
flexibility in learning optimal features of its own modality while also
incorporating the complementary knowledge of the other. Our extensive empirical
results show that while the improvement in accuracy is nominal, the value lies
in challenging and extremely difficult edge cases which is crucial in
safety-critical applications such as AD. We provide a holistic view of both
merits and limitations of using a thermal imaging system in detection.
- Abstract(参考訳): ディープラーニングに基づく検出ネットワークは、自律運転システム(ADS)において顕著に進歩している。
ADSは様々な環境照明と悪天候条件で信頼性の高い性能を持つべきである。
しかし、輝度の低下と(グレアや霧のような)視覚障害は、視覚カメラによる画質の悪い画像をもたらすため、パフォーマンスが低下する。
これらの課題を克服するために、視覚データと相補的な異なるデータモダリティを活用するというアイデアを探求する。
本稿では,RGB(視覚カメラ)データと熱(赤外線カメラ)データの両方から学習するマルチモーダル協調フレームワークに基づく包括的検出システムを提案する。
このフレームワークは2つのネットワークを協調的に訓練し、自身のモダリティの最適な特徴を学習する柔軟性を提供すると同時に、相互の補完的な知識も取り入れる。
広範な実験結果から,精度の向上は名目上はありますが,adのような安全クリティカルなアプリケーションでは極めて困難なエッジケースに価値があります。
検出に熱画像システムを使用することのメリットと限界を概観する。
関連論文リスト
- Light the Night: A Multi-Condition Diffusion Framework for Unpaired Low-Light Enhancement in Autonomous Driving [45.97279394690308]
LightDiffは、自動運転アプリケーションの低照度画像品質を高めるために設計されたフレームワークである。
深度マップ、RGB画像、テキストキャプションなど、様々なモードから入力重みを適応的に制御する新しいマルチコンディションアダプタが組み込まれている。
夜間の条件下での最先端の3D検出器の性能を著しく向上し、高い視覚的品質のスコアを達成できる。
論文 参考訳(メタデータ) (2024-04-07T04:10:06Z) - D-YOLO a robust framework for object detection in adverse weather conditions [0.0]
ヘイズ、雪、雨などの逆の気象条件は、画像品質の低下を招き、深層学習に基づく検知ネットワークの性能低下を招きかねない。
画像復元とオブジェクト検出のタスクをよりうまく統合するために,注目機能融合モジュールを備えた二重経路ネットワークを設計した。
我々はまた,検出ネットワークにヘイズフリーな機能を提供するサブネットワークを提案し,特に,明瞭な特徴抽出サブネットワークと検出ネットワーク間の距離を最小化することにより,検出ネットワークの性能を向上させる。
論文 参考訳(メタデータ) (2024-03-14T09:57:15Z) - Multi-Attention Fusion Drowsy Driving Detection Model [1.2043574473965317]
我々は,Multi-Attention Fusion Drowsy Driving Detection Model (MAF)と呼ばれる新しいアプローチを導入する。
提案モデルでは96.8%の運転覚醒検出精度が得られた。
論文 参考訳(メタデータ) (2023-12-28T14:53:32Z) - MISFIT-V: Misaligned Image Synthesis and Fusion using Information from
Thermal and Visual [2.812395851874055]
本研究は、熱・視覚情報を用いた画像合成と融合のミスアライメントを提示する(MISFIT-V)。
GAN(Generative Adversarial Network)とクロスアテンション機構を利用して、各モードから最も関連性の高い特徴をキャプチャする。
実験結果からMISFIT-Vは, 配向不良や照明・熱環境の悪化に対して強靭性を示した。
論文 参考訳(メタデータ) (2023-09-22T23:41:24Z) - Hybrid-Supervised Dual-Search: Leveraging Automatic Learning for
Loss-free Multi-Exposure Image Fusion [60.221404321514086]
マルチ露光画像融合(MEF)は、様々な露光レベルを表すデジタルイメージングの限界に対処するための重要な解決策である。
本稿では、ネットワーク構造と損失関数の両方を自動設計するための二段階最適化探索方式であるHSDS-MEFと呼ばれるMEFのためのハイブリッドスーパービジョンデュアルサーチ手法を提案する。
論文 参考訳(メタデータ) (2023-09-03T08:07:26Z) - Target-aware Dual Adversarial Learning and a Multi-scenario
Multi-Modality Benchmark to Fuse Infrared and Visible for Object Detection [65.30079184700755]
本研究は、物体検出のために異なるように見える赤外線と可視画像の融合の問題に対処する。
従来のアプローチでは、2つのモダリティの根底にある共通点を発見し、反復最適化またはディープネットワークによって共通空間に融合する。
本稿では、融合と検出の連立問題に対する二段階最適化の定式化を提案し、その後、核融合と一般的に使用される検出ネットワークのためのターゲット認識デュアル逆学習(TarDAL)ネットワークに展開する。
論文 参考訳(メタデータ) (2022-03-30T11:44:56Z) - A Synthesis-Based Approach for Thermal-to-Visible Face Verification [105.63410428506536]
本稿では,ARL-VTFおよびTUFTSマルチスペクトル顔データセット上での最先端性能を実現するアルゴリズムを提案する。
MILAB-VTF(B)も提案する。
論文 参考訳(メタデータ) (2021-08-21T17:59:56Z) - Perception-aware Multi-sensor Fusion for 3D LiDAR Semantic Segmentation [59.42262859654698]
3Dセマンティックセグメンテーションは、自動運転やロボット工学など、多くのアプリケーションにおいてシーン理解において重要である。
既存の融合法は、2つのモードの差が大きいため、有望な性能を達成できない。
本研究では,知覚認識型マルチセンサフュージョン(PMF)と呼ばれる協調融合方式について検討する。
論文 参考訳(メタデータ) (2021-06-21T10:47:26Z) - Semantics-aware Adaptive Knowledge Distillation for Sensor-to-Vision
Action Recognition [131.6328804788164]
本稿では,視覚・センサ・モダリティ(動画)における行動認識を強化するためのフレームワーク,Semantics-Aware Adaptive Knowledge Distillation Networks (SAKDN)を提案する。
SAKDNは複数のウェアラブルセンサーを教師のモダリティとして使用し、RGB動画を学生のモダリティとして使用している。
論文 参考訳(メタデータ) (2020-09-01T03:38:31Z) - Exploring Thermal Images for Object Detection in Underexposure Regions
for Autonomous Driving [67.69430435482127]
アンダーエクスポージャー地域は、安全な自動運転のための周囲の完全な認識を構築するのに不可欠である。
サーマルカメラが利用可能になったことで、他の光学センサーが解釈可能な信号を捉えていない地域を探索するための重要な代替手段となった。
本研究は,可視光画像から熱画像へ学習を伝達するためのスタイル伝達手法を用いたドメイン適応フレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-01T09:59:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。