論文の概要: RTLola on Board: Testing Real Driving Emissions on your Phone
- arxiv url: http://arxiv.org/abs/2111.05255v1
- Date: Tue, 9 Nov 2021 16:46:56 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-08 18:08:38.159018
- Title: RTLola on Board: Testing Real Driving Emissions on your Phone
- Title(参考訳): RTLolaオンボード:携帯電話で実走行エミッションをテストする
- Authors: Sebastian Biewer, Bernd Finkbeiner, Holger Hermanns, Maximilian A.
K\"ohl, Yannik Schnitzer, and Maximilian Schwenger
- Abstract要約: 自動車排出ガスの診断を目的として, RTLola ランタイムモニタをデプロイする Android アプリを提案する。
我々は、EUで現在有効となっている規制フレームワークの違反を特定するのに役立ち、Real Driving Emissions(RDE)テストの文脈での使用とサンプル実行に関するレポートを詳述する。
- 参考スコア(独自算出の注目度): 1.8564509203921222
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper is about shipping runtime verification to the masses. It presents
the crucial technology enabling everyday car owners to monitor the behaviour of
their cars in-the-wild. Concretely, we present an Android app that deploys
RTLola runtime monitors for the purpose of diagnosing automotive exhaust
emissions. For this, it harvests the availability of cheap bluetooth adapters
to the On-Board-Diagnostics (OBD) ports, which are ubiquitous in cars nowadays.
We detail its use in the context of Real Driving Emissions (RDE) tests and
report on sample runs that helped identify violations of the regulatory
framework currently valid in the European Union.
- Abstract(参考訳): 本稿では,実行時検証の一般提供について述べる。
それは、日常的な車のオーナーが車の振る舞いを観察できる重要な技術だ。
具体的には,自動車排ガスの診断を目的としてrtlolaランタイムモニタをデプロイするandroidアプリを提案する。
このため、現在自動車に普及しているobd(on-board-diagnostics)ポートに安価なbluetoothアダプタが利用できる。
我々は、EUで現在有効となっている規制フレームワークの違反を特定するのに役立ち、Real Driving Emissions(RDE)テストの文脈での使用とサンプル実行に関するレポートを詳述する。
関連論文リスト
- DriveCoT: Integrating Chain-of-Thought Reasoning with End-to-End Driving [81.04174379726251]
本稿では,DriveCoTというエンド・ツー・エンドの運転データセットを総合的に収集する。
センサーデータ、制御決定、および推論プロセスを示すチェーン・オブ・シークレット・ラベルが含まれている。
我々は,私たちのデータセットに基づいてトレーニングされたDriveCoT-Agentと呼ばれるベースラインモデルを提案し,連鎖予測と最終決定を生成する。
論文 参考訳(メタデータ) (2024-03-25T17:59:01Z) - Real-time Traffic Object Detection for Autonomous Driving [5.780326596446099]
現代のコンピュータビジョン技術は、効率よりも精度を優先する傾向がある。
既存の物体検出器はリアルタイムには程遠い。
リアルタイム要件を取り入れた,より適切な代替案を提案する。
論文 参考訳(メタデータ) (2024-01-31T19:12:56Z) - REDriver: Runtime Enforcement for Autonomous Vehicles [6.97499033700151]
本稿では,自律運転システムの実行時適用に対する汎用的かつモジュール的なアプローチであるREDriverを提案する。
ReDriverは、STLの定量的セマンティクスに基づいて、ADSの計画された軌道を監視する。
仕様に違反する可能性がある場合に、勾配駆動のアルゴリズムを使って軌道を修復する。
論文 参考訳(メタデータ) (2024-01-04T13:08:38Z) - Automated Automotive Radar Calibration With Intelligent Vehicles [73.15674960230625]
本稿では,自動車用レーダセンサの自動校正手法を提案する。
本手法では, 車両の外部改造を必要とせず, 自動走行車から得られる位置情報を利用する。
実地試験場からのデータを評価した結果,インフラセンサを自動で正確に校正できることが判明した。
論文 参考訳(メタデータ) (2023-06-23T07:01:10Z) - Discovering and Explaining Driver Behaviour under HoS Regulations [0.0]
本稿では,サービス規制に従って,生ドライバのアクティビティログを要約するアプリケーションを提案する。
このシステムは、計画、制約、クラスタリング技術を使って、ドライバーが何をしているかを抽出し、記述する。
実世界のデータでの実験では、繰り返し発生する運転パターンが、短い基本運転シーケンスから全運転日程までクラスタ化可能であることが示されている。
論文 参考訳(メタデータ) (2023-01-12T15:30:11Z) - COOPERNAUT: End-to-End Driving with Cooperative Perception for Networked
Vehicles [54.61668577827041]
本稿では,車間認識を用いたエンドツーエンド学習モデルであるCOOPERNAUTを紹介する。
われわれのAutoCastSim実験は、我々の協調知覚駆動モデルが平均成功率を40%向上させることを示唆している。
論文 参考訳(メタデータ) (2022-05-04T17:55:12Z) - CODA: A Real-World Road Corner Case Dataset for Object Detection in
Autonomous Driving [117.87070488537334]
我々は、ビジョンベース検出器のこの重要な問題を露呈する、CODAという挑戦的なデータセットを導入する。
大規模自動運転データセットで訓練された標準物体検出器の性能は、mARの12.8%以下に著しく低下した。
我々は最先端のオープンワールドオブジェクト検出器を実験し、CODAの新しいオブジェクトを確実に識別できないことを発見した。
論文 参考訳(メタデータ) (2022-03-15T08:32:56Z) - DriverGym: Democratising Reinforcement Learning for Autonomous Driving [75.91049219123899]
本稿では,自律運転のための強化学習アルゴリズムを開発するオープンソース環境であるDeadGymを提案する。
DriverGymは1000時間以上の専門家ログデータへのアクセスを提供し、リアクティブおよびデータ駆動エージェントの動作をサポートする。
広範かつフレキシブルなクローズループ評価プロトコルを用いて,実世界のデータ上でRLポリシーの性能を容易に検証できる。
論文 参考訳(メタデータ) (2021-11-12T11:47:08Z) - LATTE: LSTM Self-Attention based Anomaly Detection in Embedded
Automotive Platforms [4.286327408435937]
本稿では,制御エリアネットワーク(CAN)をベースとした自動車プラットフォーム内のサイバー攻撃を検出するための,LATTEと呼ばれる新しい異常検出フレームワークを提案する。
提案するLATTEフレームワークは,設計時の通常の動作を学習するために,新しいアテンション機構を備えたLong Short Term Memory(LSTM)予測ネットワークを用いている。
提案するLATTEフレームワークを、異なる自動車攻撃シナリオ下で評価し、この分野でよく知られた先行研究と比較した。
論文 参考訳(メタデータ) (2021-07-12T16:32:47Z) - Exploiting Playbacks in Unsupervised Domain Adaptation for 3D Object
Detection [55.12894776039135]
ディープラーニングに基づく最先端の3Dオブジェクト検出器は、有望な精度を示しているが、ドメインの慣用性に過度に適合する傾向がある。
対象領域の擬似ラベルの検出器を微調整することで,このギャップを大幅に削減する新たな学習手法を提案する。
5つの自律運転データセットにおいて、これらの擬似ラベル上の検出器を微調整することで、新しい運転環境への領域ギャップを大幅に減らすことを示す。
論文 参考訳(メタデータ) (2021-03-26T01:18:11Z) - A Physics Model-Guided Online Bayesian Framework for Energy Management
of Extended Range Electric Delivery Vehicles [3.927161292818792]
本稿では、双方向の車両とクラウド接続を備えた配送車両において使用される、利用規則に基づくEMSを改善する。
物理モデルに基づくオンラインベイズフレームワークについて記述し,最終マイルのパッケージ配信に使用されるEREVの多数の使用済み駆動サンプルについて検証した。
実輸送155回の試験車両の燃料使用量の平均は12.8%減少した。
論文 参考訳(メタデータ) (2020-06-01T08:43:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。