論文の概要: LATTE: LSTM Self-Attention based Anomaly Detection in Embedded
Automotive Platforms
- arxiv url: http://arxiv.org/abs/2107.05561v1
- Date: Mon, 12 Jul 2021 16:32:47 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-13 15:37:35.181821
- Title: LATTE: LSTM Self-Attention based Anomaly Detection in Embedded
Automotive Platforms
- Title(参考訳): LATTE: 組込み自動車プラットフォームにおけるLSTM自己注意に基づく異常検出
- Authors: Vipin K. Kukkala, Sooryaa V. Thiruloga, Sudeep Pasricha
- Abstract要約: 本稿では,制御エリアネットワーク(CAN)をベースとした自動車プラットフォーム内のサイバー攻撃を検出するための,LATTEと呼ばれる新しい異常検出フレームワークを提案する。
提案するLATTEフレームワークは,設計時の通常の動作を学習するために,新しいアテンション機構を備えたLong Short Term Memory(LSTM)予測ネットワークを用いている。
提案するLATTEフレームワークを、異なる自動車攻撃シナリオ下で評価し、この分野でよく知られた先行研究と比較した。
- 参考スコア(独自算出の注目度): 4.286327408435937
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Modern vehicles can be thought of as complex distributed embedded systems
that run a variety of automotive applications with real-time constraints.
Recent advances in the automotive industry towards greater autonomy are driving
vehicles to be increasingly connected with various external systems (e.g.,
roadside beacons, other vehicles), which makes emerging vehicles highly
vulnerable to cyber-attacks. Additionally, the increased complexity of
automotive applications and the in-vehicle networks results in poor attack
visibility, which makes detecting such attacks particularly challenging in
automotive systems. In this work, we present a novel anomaly detection
framework called LATTE to detect cyber-attacks in Controller Area Network (CAN)
based networks within automotive platforms. Our proposed LATTE framework uses a
stacked Long Short Term Memory (LSTM) predictor network with novel attention
mechanisms to learn the normal operating behavior at design time. Subsequently,
a novel detection scheme (also trained at design time) is used to detect
various cyber-attacks (as anomalies) at runtime. We evaluate our proposed LATTE
framework under different automotive attack scenarios and present a detailed
comparison with the best-known prior works in this area, to demonstrate the
potential of our approach.
- Abstract(参考訳): 現代の車両は、リアルタイム制約のある様々な自動車アプリケーションを実行する複雑な分散組み込みシステムと考えることができる。
近年の自動車産業の自律性向上に向けた進歩により、自動車は様々な外部システム(例えば道路脇のビーコンなど)とますます結びつくようになり、新興車のサイバー攻撃に対する脆弱化が図られている。
さらに、自動車アプリケーションと車載ネットワークの複雑さが増すと、攻撃の可視性が低下し、特に自動車システムにおける攻撃の検出が困難になる。
本研究では,自動車プラットフォーム内のコントローラエリアネットワーク(CAN)におけるサイバー攻撃を検出するための,LATTEと呼ばれる新しい異常検出フレームワークを提案する。
提案するLATTEフレームワークは,設計時の通常の動作を学習するために,新しいアテンション機構を備えたLong Short Term Memory(LSTM)予測ネットワークを使用する。
その後、様々なサイバー攻撃(異常として)を実行時に検出するために、新しい検出スキーム(設計時にも訓練)が使用される。
提案するLATTEフレームワークを,異なる自動車攻撃シナリオ下で評価し,この分野でよく知られた先行研究との比較を行い,その可能性を実証した。
関連論文リスト
- A Framework for the Systematic Assessment of Anomaly Detectors in Time-Sensitive Automotive Networks [0.4077787659104315]
本稿では,異常検出アルゴリズムの再現性,比較性,迅速な評価を可能にするアセスメントフレームワークを提案する。
実例検出機構を評価し,TSNトラフィックフローと異常型の組み合わせによって検出性能がどう影響するかを明らかにする。
論文 参考訳(メタデータ) (2024-05-02T14:29:42Z) - An Explainable Ensemble-based Intrusion Detection System for Software-Defined Vehicle Ad-hoc Networks [0.0]
本研究では,アンサンブルに基づく機械学習による車両ネットワークにおけるサイバー脅威の検出について検討する。
我々は,Random Forest と CatBoost を主要な研究者として用いたモデルを提案し,ロジスティック回帰を用いて最終的な決定を下す。
我々は,本手法が分類精度を向上し,過去の研究に比べて誤分類が少ないことを観察した。
論文 参考訳(メタデータ) (2023-12-08T10:39:18Z) - When Authentication Is Not Enough: On the Security of Behavioral-Based Driver Authentication Systems [53.2306792009435]
我々はランダムフォレストとリカレントニューラルネットワークアーキテクチャに基づく2つの軽量ドライバ認証システムを開発した。
我々は,SMARTCANとGANCANという2つの新しいエスケープアタックを開発することで,これらのシステムに対する攻撃を最初に提案する。
コントリビューションを通じて、これらのシステムを安全に採用する実践者を支援し、車の盗難を軽減し、ドライバーのセキュリティを高める。
論文 参考訳(メタデータ) (2023-06-09T14:33:26Z) - Reinforcement Learning based Cyberattack Model for Adaptive Traffic
Signal Controller in Connected Transportation Systems [61.39400591328625]
接続輸送システムにおいて、適応交通信号制御装置(ATSC)は、車両から受信したリアルタイム車両軌跡データを利用して、グリーンタイムを規制する。
この無線接続されたATSCはサイバー攻撃面を増やし、その脆弱性を様々なサイバー攻撃モードに拡大する。
そのようなモードの1つは、攻撃者がネットワーク内で偽の車両を作成する「シビル」攻撃である。
RLエージェントは、シビル車噴射の最適速度を学習し、アプローチの混雑を生じさせるように訓練される
論文 参考訳(メタデータ) (2022-10-31T20:12:17Z) - LCCDE: A Decision-Based Ensemble Framework for Intrusion Detection in
The Internet of Vehicles [7.795462813462946]
悪意のあるサイバー攻撃を識別できる侵入検知システム(IDS)が開発されている。
我々は、LCCDE(Lead Class and Confidence Decision Ensemble)という新しいアンサンブルIDSフレームワークを提案する。
LCCDEは、3つの高度なアルゴリズムの中で最高のパフォーマンスのMLモデルを決定することで構成される。
論文 参考訳(メタデータ) (2022-08-05T22:30:34Z) - Learning energy-efficient driving behaviors by imitating experts [75.12960180185105]
本稿では,コミュニケーション・センシングにおける制御戦略と現実的限界のギャップを埋める上で,模倣学習が果たす役割について考察する。
擬似学習は、車両の5%に採用されれば、局地的な観測のみを用いて、交通条件の異なるネットワークのエネルギー効率を15%向上させる政策を導出できることを示す。
論文 参考訳(メタデータ) (2022-06-28T17:08:31Z) - Federated Deep Learning Meets Autonomous Vehicle Perception: Design and
Verification [168.67190934250868]
フェデレーテッド・ラーニング・パワード・コネクテッド・オートモービル(FLCAV)が提案されている。
FLCAVは通信とアノテーションのコストを削減しながらプライバシを保存する。
マルチステージトレーニングのためのネットワークリソースと道路センサのポーズを決定することは困難である。
論文 参考訳(メタデータ) (2022-06-03T23:55:45Z) - Anomaly Detection in Intra-Vehicle Networks [0.0]
現代の車両は車内ネットワークや外部ネットワークを含む様々なネットワークに接続されている。
既存のプロトコルの抜け穴によって、車両ネットワークのサイバー攻撃は激増している。
本稿では,CANバスプロトコルのセキュリティ問題について議論し,既知の攻撃を検出する侵入検知システム(IDS)を提案する。
論文 参考訳(メタデータ) (2022-05-07T03:38:26Z) - COOPERNAUT: End-to-End Driving with Cooperative Perception for Networked
Vehicles [54.61668577827041]
本稿では,車間認識を用いたエンドツーエンド学習モデルであるCOOPERNAUTを紹介する。
われわれのAutoCastSim実験は、我々の協調知覚駆動モデルが平均成功率を40%向上させることを示唆している。
論文 参考訳(メタデータ) (2022-05-04T17:55:12Z) - CAN-LOC: Spoofing Detection and Physical Intrusion Localization on an
In-Vehicle CAN Bus Based on Deep Features of Voltage Signals [48.813942331065206]
車両内ネットワークのためのセキュリティ強化システムを提案する。
提案システムは,CANバスで測定した電圧信号から抽出した深い特徴を処理する2つの機構を含む。
論文 参考訳(メタデータ) (2021-06-15T06:12:33Z) - MTH-IDS: A Multi-Tiered Hybrid Intrusion Detection System for Internet
of Vehicles [12.280524044112708]
車両ネットワークに対する既知の攻撃と未知の攻撃の両方を検出するために,ハイブリッド侵入検知システム (IDS) を提案する。
提案システムは,CAN-Intrusion-datasetにおいて,99.99%の精度で様々な種類の既知の攻撃を検出できる。
車両レベルのマシン上の各データパケットの平均処理時間は0.6ms未満である。
論文 参考訳(メタデータ) (2021-05-26T17:36:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。